Set expressions and relations
[Direct modeling support]
Functions | |
| SetExpr | Gecode::singleton (const LinIntExpr &) |
| Singleton expression. | |
| SetExpr | Gecode::operator- (const SetExpr &) |
| Complement expression. | |
| SetExpr | Gecode::operator& (const SetExpr &, const SetExpr &) |
| Intersection of set expressions. | |
| SetExpr | Gecode::operator| (const SetExpr &, const SetExpr &) |
| Union of set expressions. | |
| SetExpr | Gecode::operator+ (const SetExpr &, const SetExpr &) |
| Disjoint union of set expressions. | |
| SetExpr | Gecode::operator- (const SetExpr &, const SetExpr &) |
| Difference of set expressions. | |
| SetExpr | Gecode::inter (const SetVarArgs &) |
| Intersection of set variables. | |
| SetExpr | Gecode::setunion (const SetVarArgs &) |
| Union of set variables. | |
| SetExpr | Gecode::setdunion (const SetVarArgs &) |
| Disjoint union of set variables. | |
| LinIntExpr | Gecode::cardinality (const SetExpr &) |
| Cardinality of set expression. | |
| LinIntExpr | Gecode::min (const SetExpr &) |
| Minimum element of set expression. | |
| LinIntExpr | Gecode::max (const SetExpr &) |
| Minimum element of set expression. | |
| SetRel | Gecode::operator== (const SetExpr &, const SetExpr &) |
| Equality of set expressions. | |
| SetRel | Gecode::operator!= (const SetExpr &, const SetExpr &) |
| Disequality of set expressions. | |
| SetCmpRel | Gecode::operator<= (const SetExpr &, const SetExpr &) |
| Subset of set expressions. | |
| BoolExpr | Gecode::operator<= (const SetCmpRel &, const SetExpr &) |
| Subset of set expressions. | |
| SetCmpRel | Gecode::operator>= (const SetExpr &, const SetExpr &) |
| Superset of set expressions. | |
| BoolExpr | Gecode::operator>= (const SetCmpRel &, const SetExpr &) |
| Superset of set expressions. | |
| SetRel | Gecode::operator|| (const SetExpr &, const SetExpr &) |
| Disjointness of set expressions. | |
Detailed Description
Set expressions and relations can be freely composed of variables with the usual connectives.
Function Documentation
| SetExpr Gecode::singleton | ( | const LinIntExpr & | e | ) |
Singleton expression.
| SetExpr Gecode::operator- | ( | const SetExpr & | e | ) |
Complement expression.
| SetExpr Gecode::operator& | ( | const SetExpr & | l, | |
| const SetExpr & | r | |||
| ) |
Intersection of set expressions.
| SetExpr Gecode::operator| | ( | const SetExpr & | l, | |
| const SetExpr & | r | |||
| ) |
Union of set expressions.
| SetExpr Gecode::operator+ | ( | const SetExpr & | l, | |
| const SetExpr & | r | |||
| ) |
Disjoint union of set expressions.
| SetExpr Gecode::operator- | ( | const SetExpr & | l, | |
| const SetExpr & | r | |||
| ) |
Difference of set expressions.
| SetExpr Gecode::inter | ( | const SetVarArgs & | x | ) |
Intersection of set variables.
| SetExpr Gecode::setunion | ( | const SetVarArgs & | x | ) |
Union of set variables.
| SetExpr Gecode::setdunion | ( | const SetVarArgs & | x | ) |
Disjoint union of set variables.
| LinIntExpr Gecode::cardinality | ( | const SetExpr & | e | ) |
Cardinality of set expression.
| LinIntExpr Gecode::min | ( | const SetExpr & | e | ) |
Minimum element of set expression.
| LinIntExpr Gecode::max | ( | const SetExpr & | e | ) |
Minimum element of set expression.
| SetRel Gecode::operator== | ( | const SetExpr & | e0, | |
| const SetExpr & | e1 | |||
| ) |
Equality of set expressions.
| SetRel Gecode::operator!= | ( | const SetExpr & | e0, | |
| const SetExpr & | e1 | |||
| ) |
Disequality of set expressions.
| SetCmpRel Gecode::operator<= | ( | const SetExpr & | e0, | |
| const SetExpr & | e1 | |||
| ) |
Subset of set expressions.
| BoolExpr Gecode::operator<= | ( | const SetCmpRel & | r, | |
| const SetExpr & | l | |||
| ) |
Subset of set expressions.
| SetCmpRel Gecode::operator>= | ( | const SetExpr & | e0, | |
| const SetExpr & | e1 | |||
| ) |
Superset of set expressions.
| BoolExpr Gecode::operator>= | ( | const SetCmpRel & | r, | |
| const SetExpr & | l | |||
| ) |
Superset of set expressions.
| SetRel Gecode::operator|| | ( | const SetExpr & | e0, | |
| const SetExpr & | e1 | |||
| ) |
Disjointness of set expressions.
