Constraints manuscript No.
(will be inserted by the editor)

View-based Propagator Derivation

Christian Schulte - Guido Tack

Abstract When implementing a propagator for a constraint, one must decide about vari-
ants: When implementing min, should one also implement max? Should one implement lin-
ear constraints both with unit and non-unit coefficients? Constraint variants are ubiquitous:
implementing them requires considerable (if not prohibitive) effort and decreases maintain-
ability, but will deliver better performance than resorting to constraint decomposition.

This paper shows how to usgewsto derive propagator variants, combining the effi-
ciency of dedicated propagator implementations with the simplicity and effortlessness of
decomposition.

A model for views and derived propagators is introduced. Derived propagators are
proved to beperfectin that they inherit essential properties such as correctness and do-
main and bounds consistency. Techniques for systematically deriving propagators such as
transformation, generalization, specialization, and type conversion are developed. The paper
introduces an implementation architecture for views that is independent of the underlying
constraint programming system. A detailed evaluation of views implemented in Gecode
shows that derived propagators are efficient and that views often incur no overhead. Views
have proven essential for implementing Gecode, substantially reducing the amount of code
that needs to be written and maintained.

1 Introduction

When implementing a propagator for a constraint, one typically must also decide whether
to implement some of its variants. When implementing a propagator for the constraint
max{Xi,...,Xn} =Y, should one also implement mx,...,xa} = y? The latter can be
implemented using the former as n{axxs,...,—xn} = —y. When implementing a prop-
agator for the linear equatiofi;' ; aix; = k for integer variablesq and integersy; andKk,

Christian Schulte
ICT, KTH - Royal Institute of Technology, Sweden
E-mail: cschulte@kth.se

Guido Tack

National ICT Australia (NICTA) and Faculty of Information Technology, Monash University, Caulfield, Vic-
toria, Australia

E-mail: guido.tack@monash.edu

2 Christian Schulte, Guido Tack

should one also implement the special cge, x; = k for better performance? When im-
plementing a propagator for the reified linear equatigfl ; x = c) +» b, should one also
implement(3i; X # ¢) +> b? These two constraints only differ by the sigrbpés the latter
is equivalent tq 31 ; xi = ¢) <> —b.

The two straightforward approaches for implementing constraint variants are to ei-
ther implement dedicated propagators for the variants, or to decompose. In the last exam-
ple, for instance, the reified constraint could be decomposed into two propagators, one for
(SiL1x =c) <« b/, and one fobb +» b/, introducing an additional variable.

Implementing the variants inflates code and documentation and is error prone. Given
the potential code explosion, one may be able to only implement some variants (say, min
and max). Other variants important for performance (say, ternary min and max) may be
infeasible due to excessive programming and maintenance effort. Decomposing, on the other
hand, massively increases memory consumption and runtime.

A third approach, and the one we follow in this paper, idéoivepropagators, combin-
ing the efficiency of dedicated propagator implementations with the simplicity and effort-
lessness of decomposition.

Techniques for deriving propagators have been used in constraint programming sys-
tems for a long time. Some techniques have been the topic of extensive previous research,
like the indexicalsapproach, which derives propagators from range expressioas§].[

Other similar techniques are part of the constraint programming folklore and exist in im-
plementations such as integexpressionsn IBM ILOG CP Optimizer p4] and Google
or-tools [19], which can be regarded as generalized bi-directional iicdé orliterals in

SAT solvers 2], which combine Boolean variables with negation.

In this paper, we consolidate this long line of work by presenting a model for propagator
derivation that allows us to analyze the properties of derived propagators, and by discussing
and evaluating implementation strategies.

We call the basic building block for propagator derivationiew. A view can be re-
garded as a restricted form of a bi-directional indexical or expression, where the restrictions
have been chosen carefully such that the resulting derived propagator satisfies important
properties concerning correctness and effectiveness, and such that the implementation does
not incur any overhead.

The following example shows how to derive a propagator using views.

Example 1 (Deriving a minimum propagator) Consider a propagator for the constraint
max(x,y) =z Given three additional propagators f6&= —x,y = —y, andZ = —z, we could
propagate the constraint nfi},y’) = Z using the propagator for méaxy) = z Instead of
these three additional propagators, we will derive a propagator for max from the propagator
for min using views that perform the simple negation transformations.

Views transform input and output of a propagator. For example, a minus view on a
variablex transforms the variable domain ety negating each element, passes the trans-
formed domain to the propagator, and performs the inverse transformation on the domain
returned by the propagator. With views, the implementation of the maximum propagator can
be reused: a propagator for the minimum constraint can be derived from a propagator for the
maximum constraint and a minus view for each variable. %

While the underlying technique is not new, this paper presents the first thorough aca-
demic discussion of deriving propagators using views. We systematically explsedpe
of this technique, establish ti@opertiesof derived propagators, discuss tlmitations
given the desired properties, and present and evaluate diffienpfgmentation techniques

View-based Propagator Derivation 3

includingcompile-timeresolution of views. The evaluation shows that views are widely ap-
plicable, drastically reduce programming effort, and yield efficient propagators in practice.

More specifically, we identify the properties of views that are essential for depéng
fectpropagators. The paper establishes a formal model that defines a view as a function and
a derived propagator as functional composition of views (mapping values to values) with a
propagator (mapping domains to domains). This model enables us to reason about derived
propagators: they are indeed propagators; they faithfully implement the intended constraints;
domain consistency carries over to derived propagators; different forms of bounds consis-
tency over integer variables carry over provided that the views satisfy additional yet natural
properties.

We introduce techniques for deriving propagators that use views for transformation,
generalization, specialization, and type conversion of propagators. We show how to apply
these techniques for different variable domains using various views and how views can be
used for the derivation of dual scheduling propagators.

We present and evaluate different implementation approaches for views and derived
propagators. An implementation using parametric polymorphism (such as templates in C
is shown to incur no or very low overhead. The architecture is orthogonal to the used con-
straint programming system and has been fully implemented in Gedaieijews have
proven essential for implementing Gecode — the technique is applicable to most propagators
and results in a substantial reduction of the amount of code that needs to be written and
maintained.

Plan of the paper. Section 2introduces constraints and propagat&sction 3establishes
views and propagator derivatioBection 4presents techniques for propagator derivation.
Section 5discusses related approach&gction 6describes an implementation architec-
ture based on parametric propagators and range iter&sersion 7discusses limitations
of views. The implementation is evaluatedSection 8 andSection Sconcludes the paper.

2 Preliminaries

This section introduces the notation used in the rest of the paper for constraints, propagators,
and propagation strength.

Variables, constraints, and domains.Constraint satisfaction problems uséirate set of
variables Xand afinite set of values WVe typically write variables as,y,z<€ X and values
asvwevV.

A solution of a constraint satisfaction problem assigns a single value to each variable. A
constraint restricts which assignments of values to variables are allowed.

Definition 1 (Assignments and constraints) An assignment & a function mapping vari-
ables to values. The set of all assignment8ss = X — V. A constraint cis a set of as-
signmentsg € Con = P (Asn) = (X — V) (we write Z(S) for the power set 08). Any
assignmena € cis asolutionof c. N

Constraints are defined on assignments as total functions on all variables. For a typical
constraintc, only a subset vafs) of the variables isignificant the constraint is the full
relation for allx ¢ varg(c). Constraints are either written as sets of assignments (for example,
{a€ Asn | a(x) < a(y)}) or as expressions with the usual meaning, using the notgfi¢for
examplex < y]).

4 Christian Schulte, Guido Tack

Example 2 (Sum constraint) Let X = {x,y,z} andV = {1,2,3,4}. The sum constraint
[x=y+ 7] corresponds to the following set of assignments:

[x=y+7 ={(x—ay—bz—c)|abceVAra=b+c}
,(X—=3)y— 1,z 2),
(X 4y — 2,2 2),

,(Xx—4y—3z—~1)} «

={(x—2,y—1z—1

(
X—3y—2z—~1
X—4y—172—~3

Definition 2 (Domains) A domain dis a function mapping variables to sets of values, such
thatd(x) C V. The set of all domains iBom = X — £ (V). The set of values iml for

a particular variable, d(x), is called thevariable domainof x. The following definition
expresses that any domaircan be regarded as a set of assignments, and thus a constraint:

con(d) = {a€ Asn | Vxe X:a(x) e d(x)}

An assignmené € con(d) is licensedby d. ¥

Domains thus represef@artesiansets of assignments. In this sense, any domain is
also a constraint. For a more uniform representation, we take the liberty to use domains as
constraints. In particulag € d (instead ofa € con(d)) denotes an assignmeaticensed by
d, andcnd denotescn con(d).

A domaind that maps some variable to the empty value sktiled, writtend = 0, as it
represents no valid assignments (@n= 0). A domaind representing a single assignment,
con(d) = {a}, isassignedand is written asl = {a}.

Definition 3 (Constraint satisfaction problems) A constraint satisfaction problefCSP)
is a pair(d,C) of a domaind and a set of constraints. The solutionsof a CSP(d,C)
are the assignments licensed dyhat satisfy all constraints i@, defined as sé{d,C)) =
{aecond)|vceC:aec} *

Propagators. A propagation-based constraint solver emplgyspagatorsto implement
constraints. A propagator for a constradritakes a domainl as input and removes values
from the variable domains id that are in conflict witfc.

A domaind is strongerthan a domain’, writtend C d’, if and only if d(x) C d’(x) for
all x e X. A domaind is strictly strongerthan a domainl’, writtend c d’, if and only ifd is
stronger tham’ andd(x) C d’(x) for some variablex. The goal of constraint propagation is
to prune values from variable domains, thus inferring stronger domains, without removing
solutions of the constraints.

A propagator is a functiomp that takes a domain as its argument and returns a stronger
domain, it may onlypruneassignments. If the original domain is an assigned dorfajn
the propagator either accepts({a}) = {a}) or rejects p({a}) = 0) it. We can therefore
say that a propagator realizesdacision procedurdor the unique constraint defined by
all accepted assignments. The pruning and the decision procedure must be consistent: if
the decision procedure accepts an assignment, the pruning procedure must never remove
this assignment from any domain. This property is enforced by requiring propagators to be
monotonic. The following definition captures these properties.

Definition 4 (Propagators) A propagatoris a functionp € Dom — Dom that is

= contracting: @d) C d for any domaird;

View-based Propagator Derivation 5

= monotonic: gd’) C p(d) for any domaingl’ C d.

The set of all propagators Brop. If a propagatorp returns astrictly stronger domain
(p(d) C d), we say thaip prunes the domain.drhe propagatop inducesthe unique con-
straintcy defined by the set of assignments accepteg:by

cp={acAsn|p({a}) = {a}} N

Propagators can also iempoten{p(p(d)) = p(d) for any domaird). Idempotency is
not required to make propagation sound or complete, but it can make propagation more effi-
cient [40]. Like idempotency, monotonicity as defined here is not nemssfor soundness or
completeness of a solvet]]. Most definitions and theorems in this paper are independent
of whether propagators are monotonic or not. Non-monotonicity will thus only be discussed
where it is relevant.

The propagator defined g (d) = d induces the universal constraint (i.e., it does not
prune anything), whilgyp(d) = 0 induces the empty constraint (which does not permit any
solution). Note that, contrary to other popular definitiops,is not a “valid” propagator for
arbitrary constraints, it merely induces a constraint that is weaker than any other constraint.

Propagation strength. Each propagator induces a single constraint, but different propaga-
tors inducing the same constraint can differstrength Typical examples are propagators
for the all-different constraint that perform naive pruning when variables are assigned, or
establish bounds consisten@A4] or domain consistencya[/].

In the literature, propagation strength is usually defined as a property of a domain in
relation to a constraint. For example, a domdiis domain-consistenfalso known as gen-
eralized arc-consistent) with respect to a constmintl(x) only contains values that appear
in at least one solution affor each variablex. As this paper is concerned with propagators,
propagation strength is defined with respect to a propagator.

A propagatorp is domain-completéf any domain it returns is domain-consistent with
respect tocy. For any constraint, there is exactly one domain-complete propagator for
¢ (as domains form a lattice). It is defined pgd) = dom(c, Nd), where dongc) is the
domain relaxatiorof c, the strongest domain that contains all assignments d@bnc) =
min{d | c C d}.

For constraints over integer variablas € Z), several weaker notions of propagation
strength are known. The most well-knownkisunds consistency, which in fact can mean
one of four special cases: range, boym)s bound$Z), and bound&R) consistency (as
discussed in7, 35)).

The first three differ in whether holes are ignored in the original domain, in the resulting
domain, or in both, in that order. Holes in a domain are ignored by the functiofdhi®) =
[min(d(x)) .. max(d(x))], which returns the convex hull of a variable domaifx) in Z.
BoundgR) consistency only requires solutions to be found in the real-valued relaxation of
the constraint (writtercg), and is defined using the real-valued convex hull and domain
relaxation (written hulf and dong). The different notions of bounds consistency give rise
to the respective definitions of bounds completeness.

Definition 5 (Bounds completeness)A propagatorp is

= range-complete if and only {(d) € dom(c,Nhull(d)),

= boundg¢D)-complete if and only ifo(d) C hull(dom(c,Nd)),

= boundgZ)-complete if and only ifp(d) C hull(dom(c, Nhull(d))), and
= boundgR)-complete if and only ifp(d) C hullr (domg (cor Nhullk (d)))

for any domaird. *

6 Christian Schulte, Guido Tack

3 Views

This section defines the formal model for views and derived propagators. Based on this
model, the section proves essential properties of propagators derived using views, such as
correctness and completeness. Derived propagators are thus petésctwith respect to

the formal model.

3.1 Views and Derived Propagators

Given a propagatop, a view is represented by two functiorgsand ¢ —, that can be com-
posed withp such thatp ~ o po ¢ is the desired derived propagator. The functfptrans-
forms the input domain, angi~ applies the inverse transformation to the propagator’s output
domain.

Definition 6 (Variable views and views) A variable viewgy € V — V' for a variablex is

an injective function mapping values to values. The8enay be different fronV, and the
corresponding sets of assignments, domains, constraints, and propagators arasaglled
Dom’, Con’, andProp’, respectively.

Given a family of variable viewgy for all x € X, we lift them point-wise to assign-
ments: Pasn(a)(X) = dx(a(x)). A view ¢ € Con — Con’ is a family of variable views,
lifted to constraintsp (c) = {@§asn (@) | 2 € c}. Theinverseof a view is defined ag —(c) =
{acAsn| dasn(a) €cl. .

Definition 7 (Derived propagators and constraints) Given a propagatop € Prop’ and a
view ¢, the derived propagato (p) € Prop is defined agh(p) = ¢ o po ¢. Similarly, a
derived constraints defined to be ~(c) € Con for a givenc € Con’. X

Example 3 (Scale views) Given a propagatop for the constraint = [x = y], we want to
derive a propagator fa’ = [x = 2y] using a view$ such thatp~(c) =c.

Intuitively, the functiong leavesx as it is and scalegby 2, while $ ~ does the inverse
transformation. We thus defing(v) =vandgy(v) =2v. That clarifies the need for different
setsv andV’, asV’ must contain all elements ®f multiplied by 2.

The derived propagator B(p) = ¢~ o po ¢. We say thaf (p) “uses a scale view on”
y, meaning thay is the function defined agy(v) = 2v. Similarly, using an identity view
on x amounts tapy being the identity function oW

Given the assignmerg = (x — 2,y — 1), we first apply¢ and get¢ ({a}) = {(x —
2,y+— 2)}. This is accepted bp and returned unchanged, ¢o transforms it back tda}.
Another assignmerd’ = (x — 1,y — 2) is transformed tap ({a'}) = {(x — L,y — 4)},
rejected p(¢ ({a'})) = 0), and the empty domain is mapped to the empty domair by
The propagatod (p) inducesp ~(c). ¥

3.2 Correctness of Derived Propagators

Derived propagators are well-defined and correct: a derived propagiépris in fact a
propagator, and it induces the desired constraifji,(= ¢ ~(Cp)). The proofs of these state-
ments employ the following direct consequences of the definitions of views:

P1. ¢ and¢ — are monotonic by construction (g@sand¢ ~ are defined point-wise).
P2. ¢~ o ¢ =id (the identity function, ag is injective).

View-based Propagator Derivation 7

P3. [¢({a})[=1,¢(0)=0.
P4. For any viewp and domaird € Dom, we haveg (d) € Dom’, and for anyd’ € Dom’,
we haveg ~(d') € Dom (as views are defined point-wise).

Proposition 1 (Correctness) For a propagatop and view¢, ¢ (p) is a propagator. ¥

Proof. The derived propagator is well-defined because lgqith) and ¢ ~(d) are domains
(seeP4above). We have to show thét o po ¢ is contracting and monotonic.

For contraction, we havp(¢ (d)) C ¢ (d) asp is contracting. From monotonicity @f~
(with P1), it follows that¢~(p(¢(d))) € ¢~ (¢(d)). As ¢~ o ¢ = id (with P2), we have
¢~ (p(¢(d))) C d, which proves thad(p) is contracting.

Monotonicity is shown as follows for all domai, d with d’ C d:

¢(d) C ¢(d) (¢ monotonic,P1)
= p(9(d)) C p(¢(d)) (p monotonic)
= ¢~ (p(¢(d)) S ¢ (p(9(d))) (¢~ monotonic,P1)
In summary, for any propagater §(p) = ¢ ~ o po ¢ is a propagator. "

Non-monotonic propagators as defined4d][must at least baveaklymonotonic, which
means thap({a}) C p(d) for all domainsd and assignments< d. The above proof can be
easily adjusted to weakly monotonic propagators by repladingith {a} and usingP3in
the second line of the proof.

Proposition 2 (Induced constraints) Let p be a propagator, and Igt be a view. Then
¢ (p) induces the constrairgt™(cp). *

Proof. As pinducescy, we knowp({a}) = ¢y {a} for all assignmenta. With |¢ ({a})| =
1 (P3), we havep(¢ ({a})) = cpn ¢ ({a}). Furthermore, we know thap N ¢ ({a}) is either

0 oré({a}).
» Cased: We havep ~(p(¢({a}))) =0={& € Asn |a=a Adasn(a) €Cp} = ¢ (cp)N

{a}.
= Case¢({a}): With P2 we havep ~ o ¢ =id and henced ~(p(¢ ({a}))) = {a}. Further-
more, ¢~ (cp)N{a} = {@ € Asn |a=a A pasn(a) €cp} = {a}.

Together, this shows thgt~ o po ¢ ({a}) = {a} N @ (cp). n

Another important property is that views preserve conteactif a propagatop prunes
a domain, the pruning will not be lost after transformationgby.

Proposition 3 (Views preserve contraction) Let p be a propagator, let be a view, and
letd be a domain such that(¢ (d)) C ¢ (d). Thend(p)(d) C d. «

Proof. The definition of¢ ~(c) is {a € Asn | pasn(a) € c}. Hence ¢ ~(c)| < |c|. Similarly,
we know that|¢ (c)| = |c|. From p(¢(d)) C ¢ (d), it follows that|p(¢(d))| < |¢(d)|. To-
gether, this yield$d (p)(d)| < |¢ (d)| = |d|. We have seen iRroposition that (p)(d) C d,
so we can conclude that(p)(d) c d. .

8 Christian Schulte, Guido Tack

3.3 Completeness of Derived Propagators

Ideally, a propagator derived from a domain- or bounds-complete propagator should inherit
its completeness. Unfortunately this turns out not to be true in general for all notions of
completeness and all views. We now first show how bo(figsompleteness is inherited,
and then generalize this result to the other notions.

The key insight is that bound@&) completeness of propagators derived using a \pew
depends on whethgr and¢ ~ commute with the hull operator, as defined below.

Definition 8 A constraintcis a¢-constraintfor a view ¢ if and only if for alla € c, there is
ab € Asn such thas = ¢ags, (b). A view ¢ is hull-injectiveif and only if ¢ ~(hull(dom(c))) =
hull(dom(¢ ~(c))) for all ¢-constraintsc. It is hull-surjectiveif and only if ¢ (hull(d)) =
hull(¢ (d)) for all domainsd. It is hull-bijectiveif and only if it is hull-injective and hull-
surjective. ¥

The proofs rely on the additional fact that views commute with set intersection.
Lemmal For any viewg, the equatiorp —(c1Ncy) = ¢ (c1) N@—(cz) holds. X
Proof. By definition of ¢ —, we have

¢ (cincy) ={a€ Asn| Pasn(a) € CL A Pasn(d) € C2}
As ¢asn is a function, this is equal to

{acAsn| dasn(a) €ci}n{ac Asn | dasn(@) € C2} = ¢~ (c1) NP (c2) .

Theorem 1 BoundgZ) completeness) Let p be a bound&)-complete propagator. For
any hull-bijective viewg, the propagatod (p) is bound$Z)-complete. ¥

Proof. From Proposition 2 we know thatd(p) induces the constraigt~(cp). By mono-
tonicity of ¢~ (with P1) and bound&Z) completeness ab, we know that

¢~ opog(d) < ¢~ (hull(dom(conhull(¢(d)))))

We now use the fact that both~ and¢ commute with hul(-) and set intersection:

¢~ (hull(dom(cp Nhuli(¢(d)))))
= ¢~ (hull(dom(cp N ¢ (hull(d))))) (hull-surjective)
= hull(dom(¢ ~(cp,N ¢ (hull(d))))) (hull-injective)
= hull(dom(¢ ~(cp) N @~ (¢ (huli(d))))) (commute withn)
= hull(dom(¢ ~(cp) Nhull(d))) (P2

The second step uses hull injectivity, so it requitgs) ¢ (hull(d)) to be a¢-constraint. All
assignments in g-constraint have to be the image of some assignment ufdgr This is
the case here, as the intersection wjtthull(d)) can only contain such assignments. So in
summary, we get

¢~ o po¢(d) C hull(dom(¢~(cp) N hull(d))

which is the definition off (p) being boundgZ)-complete. .

View-based Propagator Derivation 9

Stronger notions of completeness . Similar theorems hold for domain completeness, range
and boundgZ) completeness. The theorems directly follow from the fact that any giew
is domain-injective, meaning theit"(dom(c)) =dom(¢ ~(c)) for all constraints. We split

this statement into the following two lemmas.

Lemma2 Given a constraint, letd = dom(c). Then for allx € X, we havev € d(x) &
Jaec: a(x)=v. *

Proof. We prove both directions of the equivalence:

= There must be such an assignmehtcause otherwise one can construct a strictly
strongerd’ C d with v ¢ d’(x) such that stilc C d'.

< Each domaird’ in the intersectiof) {d’ € Dom | ¢ C con(d')} must contain the
valuev € d’(x) asc C d'. So for the result of the intersectiahv € d(x). "

Lemma 3 Any view ¢ is domain-injective. ¥

Proof. We have to show thap ~(dom(c)) = dom(¢ ~(c)) holds for any constraint and
any view ¢. For clarity, we write the equation including the implicit ¢enoperations:
¢~ (con(dom(c))) = con(dom(¢ ~(c))). By definition of¢ ~ and cor-), we have

¢~ (con(dom(c))) ={a€ Asn | ¥xe X: Pasn(a)(x) € dom(c)(x)}
={acAsn|VxeXIbec: pasn(@)(x)=b(x)} (Lemma)

As dasn is an injective function, we can find suclibéhat is in the range apasn, if and only
if there is also &' € ¢ ~(c) such thatpas, (b') = b. Therefore, we get

{acAsn|vxe X3 e (c): ax) =b'(x)}
={acAsn|vxe X: a(x) € dom(¢(c))(x)}
=con(dom(¢(c))) "

The following three theorems express under which condittbesdifferent notions of
completeness are preserved when deriving propagators. The proofs for these theorems are
analogous to the proof dtheorem JusingLemma 3

Theorem 2 Bound¢D) completeness) Let p be a bound&)-complete propagator. For
any hull-injective views, the propagatod (p) is bound¢D)-complete. *

Theorem 3 (Range completeness) et p be a range-complete propagator. For any hull-
surjective viewg, the propagatod (p) is range-complete. ¥

Theorem 4 (Domain completeness)Let p be a domain-complete propagator, andfidte
a view. Thend (p) is domain-complete. ¥

This last theorem is particularly interesting. It states that deriving a propagator from a
domain-complete propagator yields a domain-complete propagator, no matter what view is
used.

An additional case not discussed above is a propagator derived from a @unds
complete propagator and a hull-injective but not hull-surjective view. This is a common
case, as for example scale views and propagators for linear constraints fall in this category.
The resulting propagator is, in general, only boufidscomplete. This is exactly what we
would expect from a propagator for linear equations, as the next example demonstrates.

10 Christian Schulte, Guido Tack

Example 4 (Linear constraints) A propagator for a linear constraing = [y, % = C]
andn scale views (seExample Jyield a propagator for a linear constraint with coefficients
csa =[5, a% =cl.

The usual propagator for a linear constraint with coefficients achieves bd@indsn-
sistency in linear timé(n) [21]. However, itis bound$Z)-complete for unit coefficients.
Hence, the above-mentioned property applies: The propagaiwy isbound$Z)-complete,
scale views are only hull-injective, so the derived propagataesfais bound$R)-complete.
Implementing the simpler propagator without coefficients and deriving the variant with co-
efficients yields propagators with exactly the same runtime complexity and propagation
strength as manually implemented propagators. X

3.4 Additional Properties of Derived Propagators

The following discussion shows how views can be composed, and how derived propagators
behave with respect to idempotency and subsumption.

View composition. A derived propagator permits further derivation. Consider a propagator

p and two viewsg, ¢’. Then¢’(¢(p)) is a perfectly acceptable derived propagator, and
properties like correctness and completeness carry over transitively. For instance, we can
derive a propagator fgx —y = c] from a propagator fofx+y = 0], combining aroffset

view (¢y(v) = v+c) and aminus view(¢y(v) = —v) ony. This yields a propagator for
[x+(—(y+¢)) =0 = [x—y=c].

Fixed points. Schulte and Stuckey!p] show how to optimize the scheduling of propaga-
tors that are known to be at a fixed point. Views preserve fixed points of propagators, so the
same optimizations apply to derived propagators.

Proposition 4 Let p be a propagator, lep be a view, and letl be a domain. I (d) is a
fixed point ofp, thend is a fixed point of (p). .

Proof. Assumep(p(¢(d))) = p(¢(d)). We have to shovd (p)(d) = @ (p)(¢(p)(d)). With
the assumption, we can wrig(p)(d) = (¢ ~o po po ¢)(d). We know thatp o ¢ ~(c) =c if
|¢~(c)| = |c|. As we first applyp, this is the case here, so we can gddg ~ in the middle,
yielding (¢ ~opo(¢o¢~)opo¢)(d). With function composition being associative, this is
equal tod (p)(§(p)(d)). .

Subsumption. A propagator isubsumedalso known as entailed) by a domainf and

only if for all stronger domaing’ C d, p(d’) = d’. Subsumed propagators cannot do any
pruning in the remaining subtree of the search, and can therefore be removed. Deciding
subsumption is coNP-complete in general, but for many practically relevant propagators
an approximation can be decided easily (such as when a domain becomes assigned). The
following theorem states that the approximation is also valid for the derived propagator.

Proposition 5 Let p be a propagator and létbe a view. The propagatd(p) is subsumed
by a domaird if and only if p is subsumed by (d). ¥

Proof. With P2we get that’d’ Cd: ¢ (p(¢(d’))) =d’ is equivalent to

vd'Cd: ¢ (p(¢(d))) = (¢(d)

View-based Propagator Derivation 11

As ¢~ is a function, and because it preserves contraction Pseposition J, this is
equivalenttovd’ C d: p(¢(d’)) = ¢(d"). This can be rewritten tad” C ¢ (d): p(d”) =d”
because alp (d’) are subsets af (d). n

4 Propagator Derivation Techniques

This section introduces systematic techniques for deriving propagators using views. The
techniques capture the transformation, generalization, specialization, and type conversion
of propagators and are shown to be widely applicable across different variable domains and
application areas.

4.1 Transformation

Boolean connectives.For Boolean variables, wheké= {0, 1}, the only view apart from
identity for Boolean variables captures negatiomeyation viewon x definesgy(v) =1—v
for x € X andv € V. Deriving propagators using Boolean views thus means to propagate
usingliterals rather than variables.

The obvious application of negation views is to derive propagators for all Boolean con-
nectives from just three propagators. A negation viewxfor x =y yields a propagator for
—Xx =Y. From disjunctiorxVy = zone can derive conjunction\y = zwith negation views
onx,Y, z, and implicatiorx — y = zwith a negation view ox. From equivalencg+ y=z
one can derive exclusive &by = zwith a negation view o

As Boolean constraints are widespread, it pays off to optimize frequently occurring
cases of propagators for Boolean connectives. One important propagatok/is for =y
with arbitrarily many variables. Again, conjunction can be derived with negation views on
the x; and ony. Another important propagator implements the constrgfht x = 1. A
dedicated propagator for this constraint is essential as the constraint occurs frequently and
can be implemented efficiently using watched literals, see for exarhpleWith views all
implementation work is readily reused for conjunction. This shows a general advantage of
views: effort put into optimizing a single propagator directly pays off for all other propaga-
tors derived from it.

Boolean cardinality. Like the constraint/l; x = 1, the Boolean cardinality constraint
Sit1X > coccurs frequently and can be implemented efficiently using watched literals (re-
quiring c+ 1 watched literals, Boolean disjunction corresponds to the case wher).

But also a propagator fgF[' ; x; < c can be derived using negation views on hevith the
following transformation:

Sixi<cC <= -3 1% >-¢C <= n-Y';%>n-c
= y1l1-x>n—c <3 ;X>n—c

Reification. Many reified constraints (such &5 ;X = c) <> b) also exist in a negated
version (such a6y} _; X # c) <+ b). Deriving the negated version is trivial by using a nega-
tion view on the Boolean control variabke This contrasts nicely with the effort without
views: either the entire code must be duplicated or the parts that perform checking whether
the constraint or its negation is subsumed must be factored out and combined differently for
the two variants.

12 Christian Schulte, Guido Tack

! [! ! [!
[I S JI [Lt }
11 8 5 27T 5 8 11

es(t’) ectt’) Istt’) let(t) es(t) ect(t) Ist(t) Ict(t)
Fig. 1 Taskt and its dual task’ using a minus view

Transformation using set views. Set constraints deal with variables whose values are fi-
nite sets. Usingomplement view&nalogous to Boolean negation, as sets with their usual
operations also form a Boolean algebra)xg z with a propagator foxNy = z yields a
propagator fox Uy = z. A complement view oty yieldsx\y =z

Transformation using integer views. The obvious integer equivalent to negation views
for Boolean variables amninus viewsa minus view on an integer variabas defined as
¢x(v) = —v. Minus views help to derive propagators following simple transformations: for
example, miix,y) =z can be derived from mdx,y) = zby using minus views fox, y, and
z
Transformations through minus views can improve performance in subtle ways. Con-
sider a bound#.)-complete propagator for multiplicationx y = z (for example, L, Sec-
tion 6.5] or [39]). Propagation depends on whether zero is still includetiérdomains ok,
y, orz. Testing for inclusion of zero each time the propagator is executed may be inefficient,
and it leads to a convoluted implementation. Instead, one would like to rewrite the propaga-
tor to special variants whesey, andz are either strictly positive or negative. These variants
can propagate more efficiently, in particular because propagation can easily be made idem-
potent. Instead of implementing three different propagatass £ strictly positive; onlyx or
y strictly positive; onlyz strictly positive), a single propagator assuming that all views are
strictly positive is sufficient. The other propagators can be derived using minus views.
Again, with views it becomes realistic to optimize a single implementation of a prop-
agator and derive other, equally optimized, implementations. The effort to implement all
required specialized versions without views is typically unrealistic.

Scheduling propagators. An important application area is constraint-based scheduling, see
for example]. Many propagation algorithms for constraint-based sclieglare based on
tasks, where a tagkis characterized by its start time, processing time (how long does the
task take to be executed on a resource), and end time. Scheduling algorithms are typically
expressed in terms of earliest start time (@3t latest start time (I$t)), earliest completion

time (ectt)), and latest completion time (i&}).

Another particular aspect of scheduling algorithms is that they are often required in two,
mutually dual, variants. Let us consider not-first/not-last propagation as an example. Assume
a set of taskg and a task ¢ T to be scheduled on the same resource. Tthesnnot be
scheduled before the tasksTnt is not-first inT U {t}), if ect(t) > Ist(T) (where IstT) is a
conservative estimate of the latest start time of all taskg)itHence, est) can be adjusted
to leave some room for at least one task frdmThe dual variant is that is not-last: if
ect(T) > Ist(t) (again, edtT) estimates the earliest completion timelgf then Ictt) can be
adjusted.

Running the dual variant of a scheduling algorithm on task3 is the same as running
the original algorithm on thdual tasks’te T’, which are simply mirrored at the 0-origin of

View-based Propagator Derivation 13

the time scale (seleigure 1):
est(t’) = —lct(t) ectt’) = —Ist(t) Ist(t') = —ectt) Ict(t') = —esft)

The dual variant of a scheduling propagator can be automatically derived using a minus
view that transforms the time values. In our example, only a propagator for not-first needs
to be implemented and the propagator for not-last can be derived (or vice versa). This is in
particular beneficial if the algorithms use sophisticated data structures strass fi4].

Here, also the data structure needs to be implemented only once and the dual data structure
for the dual propagator is derived.

4.2 Generalization

Common views for integer variables capture linear transformations of the integer values: an
offset viewfor o € Z on x is defined aspx(v) = v+ 0, and ascale viewfor a€ Z on x is
defined agpx(v) = av.

Offset and scale views are useful for generalizing propagators. Generalization has two
key advantages: simplicity and efficiency. A more specialized propagator is often simpler to
implement (and simpler to implemeaorrectly) than a generalized version. The specialized
version can save memory and runtime during execution.

We can devise an efficient propagation algorithm for the common case of a linear equal-
ity constraint with unit coefficient§!_; x; = c. The more general ca§¢_; ax; = c can be
derived by using scale views f@ on x; (the same technique of course applies to linear
inequalities and disequality rather than equality). A common optimization for the general
case is to determine the greatest common divisor of the coefficégread simplify the
equation accordingly. Using views does not preclude this optimization, as the analysis and
simplification can be performed on the model before posting the derived propagator.

Similarly, a propagator feall-different(xs, .. ., X,) can be generalized til-different c; +
X1,.--,Cn+Xn) by using offset views for; € Z on ;. Likewise, from a propagator for the
element constraird[x] =y for integersay, ..., a, and integer variables andy, we can de-
rive the generalized versiajx+ o] = y with an offset view, where € Z provides a useful
offset for the index variablg.

These generalizations can be applied to domain- as well as bounds-complete propa-
gators. While most Boolean propagators are domain-complete, bounds completeness plays
an important role for integer propagatofection 3.3shows that, given appropriate hull-
surjective and/or hull-injective views, the different notions of bounds consistency are pre-
served when deriving propagators.

The views for integer variables presented in this section have the following properties:
minus and offset views are hull-bijective, whereas a scale vievaforZ on x is always
hull-injective and only hull-surjective id = 1 ora= —1 (in which cases it coincides with
the identity view or a minus view, respectively).

4.3 Specialization

We employconstant views$o specialize propagators. A constant view behaves like an as-
signed variable. In practice, specialization has two advantages. Fewer variables require less
memory. And specialized propagators can be compiled to more efficient code, if the con-
stants are known at compile time.

14 Christian Schulte, Guido Tack

Examples for specialization are

= a propagator for binary linear inequality+ y < c derived from a propagator for+y+
z< chy using a constant O fa,

= areified propagator fojx = c) <> b from (x=Yy) «» b and a constant for y;

= propagators for the counting constrain{s | x; =c}|=zand|{i | x =y}|=cfrom a
propagator fot{i | xi =y} |=1z

= a propagator for set disjointness from a propagatoxfoly = z and a constant empty
set forz; and many more.

We have to extend the model in a straightforward way to accommodate constant views.
Propagators may now be defined with respect to a superset of the variébles. A
constant view for the valuk on a variablez € X'\ X translates between the two sets of
variables:

¢(c)={ak/Z|acct ¢ (c)={ax|acc}
Here,alk/z] means augmenting the assignmaisp that it mapg to k, anday is the func-
tional restriction ofa to the seiX.

It is important that this definition preserves failure. If a propagator returns a failed do-
maind that maps to the empty set, thep—(d) is the empty set, too (recall that this is really
¢~ (con(d)), and corid) = 0 if d(z) = 0).

4.4 Type Conversion

A type conversion view lets propagators for one type of variable work with a different type,
by translating the underlying representation. Our model already accommodates for this, as
a view ¢« maps elements between different 3étandV’.

Integer views. Boolean variables are essentially integer variables restricted to the values
{0,1}. Constraint programming systems may choose a more efficient implementation for
Boolean variables and hence the types for integer and Boolean variables differ. By wrapping
an efficient Boolean variable in amteger viewall integer propagators can be directly reused

with Boolean variables. Note that in an implementation based-ore@plates as presented

in Section 6 a wrapper may not even be necessary if Boolean variabledysimplement

the same interface as integer variables. Integer views for Boolean variables can save substan-
tial effort. For example, an implementation of tfegular-constraint for Boolean variables

can be derived which is actually useful in practi@é][

Care should be taken, however, as dedicated propagators for the Boolean case can often
exploit special techniques. For example, a Boolean disjunction propagated using watched
literals is far more efficient than instantiating a linear constrgiht, by > 1; and the con-
straint 3 ; a;jbj < c for constant coefficients; can be implemented efficiently by sorting
the terms according to tre.

Singleton set views.A singleton set viewn an integer variablg, defined agy(v) = {v},
presents an integer variable as a set variable. Many constraints involve both integer and set
variables, and some of them can be expressed with singleton set views. A simple constraint
is x € y, wherex is an integer variable angla set variable. Singleton set views derive it as
{x} Cy. This extends t¢x} ¢y for all other set relations.

Singleton set views can also be used to derive pure integer constraints from set prop-
agators. For example, the constrasamexy, ..., Xn,Y1,...,Ym) With integer variables, y;

View-based Propagator Derivation 15

| Variable type [| Implemented| Derived | Ratio |

Integer 93 377 4.05
Boolean 30 93 3.10
Set 31 146 4.71
Overall 154 616 4.00

Table 1 Number of implemented vs. derived propagators

states that the variablestake the same values as the varialyle®Vith singleton set views,
Uli{x} = Urjnzl{yj} implements this constraint (albeit with weaker propagation than the
algorithm presented ir]).

Set bounds and complete set domain variablesMost systems approximate set variable
domains as set intervals defined by lower and upper bows#j4g]. However, R2] intro-

duces a representation for the complete domains of set variables, using ROBDDs. Type
conversion views can translate between set interval and ROBDD-based implementations.
We can derive a propagator on ROBDD-based variables from a set interval propagator, and
thus reuse set interval propagators for which no efficient ROBDD representation exists.

4.5 Applicability and Return on Investment

To get an overview of how applicable the presented techniques for propagator derivation
are, let us consider the use of views in Gecode (version 3.¥aB)e 1shows the number

of propagator implementations and the number of propagators derived from the implemen-
tations. On average, every propagator implementation results in four derived propagators.
Propagator implementations in Gecode account for almost 40000 lines of code and 21000
lines of documentation. As a rough estimate, deriving propagators using views thus saves
around 120000 lines of code and 60000 lines documentation to be written, tested, and main-
tained. On the other hand, the views mentioned in this section are implemented in less than
8000 lines of code, yielding a 1500% return on investment.

5 Related Work

The techniques presented in this paper are based on previous research and folklore ideas
that have been known in the constraint programming community for a long time. Reusing
functionality (like a propagator) by wrapping it in an adaptor (like a view) is of course a
much more general technique — think of higher-order functionsdikeor mapin functional
programming languages; or chaining command-line tools in Unix operating systems using
pipes.

This section discusses related approaches in the constraint programming context, as well
as systems that have used or extended the concept of views as presented here.

5.1 Indexicals and IBM ILOG Expressions

Views are closely related to both indexica43] and IBM ILOG CP Optimizer expres-
sions [24]. Indexicals are read-only anidirectionalbut more expressive than views, Solver

16 Christian Schulte, Guido Tack

expressions arbidirectional but give no guarantees about the result of update operations.
Views are bidirectional but limited in expressivity, as discussed below.

Anindexical is a propagator that prunes a single variable and is defined in terms of range
expressions. In contrast to views, range expressions can involve multiple variables, but on
the other hand only operate in one direction. For instance, in an indexical for the constraint
[x=y+ 7], the range expressiom-z would be used to prune the domainxgfbut not for
pruning the domains of or z.

Thel | cl nt Exp base class in IBM ILOG CP Optimizer (which has been around since
early versions of ILOG Solver) is an extension of the indexical concept, where also domain
update operations are supported. Expressions can therefore be used to implement derived
propagators. However, no guarantees are given as to whether an update operation on a com-
plex expression actually results in domain updates of the variables the expression consists
of. The CP Optimizer documentation explicitly recommends decomposing expressions us-
ing intermediate variables in order to get the necessary guarantees. Views as presented in
this paper follow an opposite approach. They extend indexicals with update operations but
arelimited in expressivity, just enough to get the strong correctness and completeness guar-
antees of derived propagators presenteflidntion 3

5.2 SAT Literals

Unit propagation in SAT solvers performs propagation for Boolean clauses, which are dis-
junctions ofliterals, which in turn are positive or negated Boolean variables. In implemen-
tations such as MiniSat.p], the Boolean clause propagator is in fact derived from a Emp
n-ary disjunction propagator arideral viewsof the variables that perform negation for the
negative literals.

5.3 Constraint Composition

Instead of regarding a vieg@ astransforminga constraint, one can regard asadditional
constraints, implementing the decomposition. ASsuming(ears Xxi, ..., X, we use addi-
tional variablesd, ..., x;. Instead ofc, we usec’ = c[x1/X},...,%n/X;], which is the same
relation asc, but onxj, ..., x;. Finally, n view constraints g; link the original variables to
the new variables, eadl ; being equivalent to the relatiofi= ¢;(x;). The solutions of the
decomposition model, restricted to tkeg ..., X,, are exactly the solutions of the original
view-based model.

Every view constrainty ; shares exactly one variable withand no variable with any
othercy ;. Thus, the constraint graph is Berge-acych§ fand a fixed point can be com-
puted by first propagating all th, ;, then propagating(x;/x}, ..., X./x'n], and then again
propagating they ;. This is exactly whatp~ o po ¢ does. Constraint solvers typically do
not provide any means of specifying the propagator scheduling in such a fine-grained way
(Lagerkvist and Schulte show how to use propagator groups to achiev@islfhus, de-
riving propagators using views is also a technique for specifying perfect propagator schedul-
ing.

On a more historical level, a derived propagator is related to the notigatbf con-
sistency. A domain is path-consistent for a set of constraints, if for any s{set} of
its variablesy; € d(x) andv; € d(y) implies that there is a values € d(z) such that the
pair (v1, Vo) satisfies all the (binary) constraints betweeandy, the pair(vy,v3) satisfies

View-based Propagator Derivation 17

all the (binary) constraints betweerandz, and the pair(vs,Vv,) satisfies all the (binary)
constraints betweenandy [28]. If ¢(p) is domain-complete fop ~(c), then it achieves
path consistency for the constraijki /X, . .., %\ /%,] and all thecy ; in the decomposition
model.

5.4 Views in Other Systems

Several systems have adopted techniques for deriving propagators using views as presented
in this paper. The following three explicitly reference our previous work as a basis for their
implementations.

MINION [16] uses views much in the same way as Gecode, to derive propsdetm
generic implementations.

Lazy Clause Generation[13] is a combination of propagation-based finite-domain con-
straint solving and SAT-style clause learning. Views have proven essential for an efficient
implementation, as they greatly reduce the number of Boolean literals generated, which
saves memory, makes learned clauses more effective, and helps the VSIDS search heuristic.

CaSPER]9, 8] extends views as introduced here to include non-injectiuttiraariable
views. This makes it possible to map entire arithmetic and Boolean expressions in the model
to expressions of views and simple propagators. Non-injective views induce weaker guaran-
tees for the derived propagators (as will be discussetkirtion §. Derived propagators in
CaSPER are therefore restricted to bounds propagation.

6 Implementation

This section presents an implementation architecture for views and derived propagators,
based on making propagatgearametric. Deriving a propagator then meanstantiating

a parametric propagator with views. The presented architecture is an orthogonal layer of
abstraction on top of any solver implementation.

6.1 Views

The model introduced views as functions that transform the input and output of a propagator,
which maps domains to domains. In an object-oriented implementation of this model, a
propagator is no longer a function, but an object withrampagat e method thaticcesses

and modifiesa domain through the methods of variable objects. Such an object-oriented
model is used for example by ILOG SolveX3] and Choco 25], and is the basis of most of

the current propagation-based constraint solvers.

In the following examples, we use~Gemplates to achieve propagator parametricity.
Section 6.3will discuss an alternative implementation based on dyndaimding.

Figure 2shows G classes for a simple integer variable (just representing bounds in-
formation) and corresponding minus and constant integer views. The views have the same
interface as the variable, so that they can be used in its place. A minus view contains a
pointer to the underlying integer variable adelegatesall the operations, performing the
necessary transformations. A constant view simply returns the constant for domain access
operations, and ignores update operations. For the sake of brevity, the sample code does not
handle failure (when domains are emptied).

18 Christian Schulte, Guido Tack

class IntVar {
private: int _mn, _nmax;
public: int mn(void) { return _mn; }
int mx(void) { return _max; }
void adjmin(int n) { if (n> _mnmn) mn=n; }
void adjmax(int n) { if (n < _max) _nmax = n; }
voi d subscribe(EventSet e) { /+ performsubscription */ }

3

class M nusVi ew {
protected: IntVar* x;
public: M nusVi ew(I nt Var* x0) : x(x0) {}
int min(void) { return -x->max(); }
int max(void) { return -x->nmin(); }
void adjmn(int n) { x->adjnmax(-n); }
void adjmax(int n) { x->adjmn(-n); }
voi d subscribe(EventSet e) { x->subscribe(negate(e)); }
H

class ConstlntView {

protected: int c;

publi c: ConstIntViewint c0) : c(c0) {}
int mn(void) { return c; }
int max(void) { return c; }
void adjmn(int n) { }
void adjmax(int n) { }
voi d subscribe(Event e) { }

b

Fig. 2 Integer variable, minus and constant views

Events. Most constraint solvers schedule the execution of propagators accordiugrits
(for an overview see3g]). For example, a propagatqr for [x < y] can only prune the
domain (and thus should only be executed) if either the lower boundafthe upper
bound ofy changes, writteribc(x) and ubc(y). We say thatp subscribego the event set
{Ibe(x),ubc(y)}, implemented as theubscri be method inFigure 2

Now assume thap' is derived fromp using minus views om andy, thus implementing
x> y. Obviously,p’ should subscribe to the dual event dethc(x), Ibc(y)}. In the imple-
mentation, minus views first negate the event set before delegating the subscription to the
underlying variable.

For some views, events likébc or Ibc may not map to corresponding bounds events on
the view. For instance, when using a permutation view that mapsi(i) for an arbitrary
permutatiorvt, an upper bound event on the variable may not correspond to a bound change
on the view and vice versa. In this case, slwdscri be method of the view must map any
event to thelmc event, signaling an arbitrary domain change. In a system that permits views
like this, propagators must be able to deal with spurious events, as they may be scheduled
even if the event they are actually interested in (suclibasmay not have happened.

6.2 Deriving Propagators
In order to derive a propagator using view objects like the above, wparsenetricity, a

mechanism provided by the implementation language that supports the instantiation of the
same code (the propagator) with different parameters (the views).

View-based Propagator Derivation 19

tenpl at e<cl ass VX, class VyY>
class LessThan : public Propagator {
protected: VX+ Xx; VYx y;
public: LessThan(VXx x0, VYx y0) : x(x0), y(y0) {
x->subscri be(LONER_BOUND) ; y->subscri be(UPPER_BOUND) ;

virtual void propagate(void) {
x->adj max(y->max()-1); y->adjm n(x->mn()+1);
}

b

Fig. 3 Parametric less-than propagator

Figure 3shows a simple less-than propagator. The propagator is basédtemplates,
it is parametricover the types of the two views it uses and canirstantiatedwith any
view that provides the necessary operations. This type of parametricity is pali@chetric
polymorphismand is available in other programming languages for example in the form of
Java generic2[)] or Standard ML functorsZ9).

Given two pointers to integer variablesandy, the propagator can be instantiated to
implement]x < y] as follows (using thént Var class fromFigure 2:

new LessThan<I nt Var, I nt Var>(x, y);

The following instantiation yields a propagator for> y]:

new LessThan<M nusVi ew, M nusVi ew>(new M nusVi em x), new M nusVi ew(y));

6.3 Parametricity

Independent of the concrete implementation, views form an orthogonal layer of abstraction
on top of any propagation-based constraint solver. As long as the implementation language
provides some kind of parametricity, and variable domains are accessed through some form
of variable objects, propagators can be derived using views.

In addition to parametric polymorphism, two other forms of parametricity ekist-
tional parametricity andlynamic bindingFunctional parametricity means that in languages
such as Standard M2P] or Haskell 3], a higher-order function is parametric over its argu-
ments. Dynamic binding is typically coupled with inheritance in object-oriented languages
(virtual function calls in &, method calls in Java). Even in languages that lack direct sup-
port for parametricity, parametric behavior can often be achieved using other mechanisms,
such as macros or function pointers in C.

Choice of parametricity. In C++, parametric polymorphism and dynamic binding have ad-
vantages and disadvantages as it comes to deriving propagators.

Templates are compiled byjonomorphizationthe code is replicated and specialized
for each instance. The compiler can generate optimized code for each instance, for example
by inlining the transformations that a view implements.

Achieving high efficiency in € with templates sacrifices some expressiveness. Instan-
tiation canonly happen at compile-time. Hence, either @ust be used for modeling, or all
potentially required propagator variants must be instantiated explicitly.chb&ewhich
propagator to use can however be made at runtime: for linear equations, for instance, if all
coefficients are units, the optimized original propagator can be posted.

20 Christian Schulte, Guido Tack

Forn-ary constraints, compile-time instantiation can be a limitation, as all arrays must be
monomorphic (contain only a single kind of view). For example, one cannot mix scale and
minus views in linear constraints. For some propagators, we can work around this restriction
using more than a single array of views. For example, a propagator for a linear constraint
can employ two arrays of different view types, one of which may then be instantiated with
identity views and the other with minus views. While this poses a limitation in principle, our
experience from Gecode suggests that there are only few propagators in practice that suffer
from this limitation.

Dynamic binding is more flexible than parametric polymorphism, as instantiation hap-
pens at runtime and arrays can be polymorphic. Views with virtual methods can therefore be
used at the modeling level, and new views can be introduced and used with existing propa-
gators without recompilation. Several systems that implement views or related approaches
(for instance IBM ILOG CP Optimizer4] or CaSPER §]) make use of dynamic binding
in order to take advantage of this added flexibility.

The flexibility of dynamic binding comes at the cost of reduced efficiency, for two rea-
sons. First, dynamic binding is usually implemented usiittpal tables where methods
are invoked indirectly, requiring a table lookup at runtime. Second, and more importantly,
the indirection through a virtual table makes certain compiler optimizations impossible. For
instance, the transformations done by view operations typically cannot be inlined and op-
timized. For a detailed discussion of the performance impact of dynamic bindingl@ee [
and [23]. Section 8evaluates empirically how these virtual method calls affecformance.

A system with views based on~Gemplates does not rule out dynamic binding. Prop-
agators can be instantiated with all the views known to be useful at compile time, and,
additionally, as a version with views based on virtual methods.

Compile-time versus runtime constants.Some views involve a parameter, such as the
coefficient of a scale view or the constant of a constant view. Depending on how these views
are used, the parameters may be known at compile time, or they may be part of the instance
data of the constraint model.

For example, when deriving Boolean disjunctiony from xVvy <> zand a constant 1 for
z, we can take advantage of the constant being known at compile-time, and the compiler can
apply more aggressive optimizations. Other examples are a minus view that can be regarded
as a compile-time specialization of a scale view with coefficieht and a zero view which
specializes a constant integer view.

Conversely, using runtime parameters the programmer regains some flexibility; for ex-
ample, araffine viewgy(v) = av+ o with integer parametersando can express any com-
bination of offset, scale, minus, and constant views, and therefore (monomorphic) arrays of
affine views express a limited form of array polymorphism. These types of views will be
used for propagators where the parameters are part of the instance data of the model (as will
often be the case with array coefficients, for instance).

6.4 Iterators

Typical domain operations involve a single integer value, for instance adjusting the mini-
mum or maximum of an integer variable. These operations are not efficient if a propagator
performs full domain reasoning on integer variables or deals with set variables. Therefore,
set-valued operations, like updating a whole integer variable domain to a new set, or ex-
cluding a set of elements from a set variable domain, are important for efficiency. Many

View-based Propagator Derivation 21

constraint programming systems provide an abstract set-datatype for accessing and updat-
ing variable domains, as for example in Cho6j ECL'PS® [11], SICStus Prolog42], and

Mozart 30]. IBM ILOG CP Optimizer R4] only allows access by iterating over the values

of a variable domain.

This section developgeratorsas one particular abstract datatype for set-valued opera-
tions on variables and views. There are two main reasons to discuss iterators in this paper.
First, iterators provide simple, expressive, and efficient set-valued operations on variables.
Second, and more importantly, iterators transparently perform the transformations needed
for set-valued operations on views, and thus constitute a perfect fit for deriving propagators.

Range sequences and range iteratorsVe define arange [m.. n] to denote the set of
integers{l € Z | m<1 < n}. A range sequenceangesS) for a finite set of integer§ C Z

is the shortest sequenese= ([my .. ng] ..., [m .. n]) such thatS= U ; [m .. nj] and the
ranges are ordered by their smallest elemam{s(m 1 for 1 <i < k). We thus define the

set covered by a range sequence asset|J¥_; [m .. nj]. The above range sequence is also
written as([m; .. ni})!‘zl. Clearly, the range sequence of a set is unique, none of its ranges is
empty, anchi +1 < m;q for 1 <i <k

A range iteratorfor a range sequenae= ([.. m}):‘zl is an object that provides itera-
tion overs: each of thgm .. nj] can be obtained in sequential order but only one at a time.
Arange iterator provides the following operations:done() tests whether all ranges have
been iterated;.next () moves to the next range, andr n() andr.max () return the mini-
mum and maximum value for the current range. Byrgetve refer to the set defined by an
iteratorr (which must coincide with ség)).

Arange iterator naturally hides its implementation. It can iterate a sequence (for instance
an array) directly by position, but it can just as well traverse a linked list or the leaves of a
balanced tree, or for example iterate over the union of two other iterators.

Iterators are consumed by iteration. Hence, if the same sequence needs to be iterated
twice, a fresh iterator is needed. If iteration is cheap, an iterator can support multiple iter-
ations by providing a reset operation. Otherwiseaahe iteratortakes an arbitrary range
iterator as input, iterates it completely, and stores the obtained ranges in an array. Its opera-
tions then use the array. The cache iterator implements a reset operation, so that the possibly
costly input iterator is used only once, while the cache iterator can be used as often as
needed.

Iterators for variables. The two basic set-valued operations on integer variables are do-
main access and domain update. For an integer variatie operatiox.get dom() returns

a range iterator for rangéd(x)). The operatiorx.set dom(r) updates the variable domain

of x to sefr) given a range iteratar, provided that sét) C d(x). The responsibility for
ensuring that sét) C d(x) is left to the programmer.

In order to provide safer and richer operations, we canitesator combinators For
example, arintersection iterator r= iinter(rq1,r2) combines two range iteratorg andr;
such that s€t) = se{r;) Nselr,). Similarly, adifference iterator = iminus(ry,rz) yields
se(r) =sef{r1) \ se{rz).

Richer set-valued operations are then effortless. The opervatidip don(r) adjusts the
domaind(x) by setr), yielding d(x) N se{r), whereasc.excdom(r) excludes sét) from
d(x), yieldingd(x) \ se{r):

x.adj dom(r) = x.set dom(iinter(x.get dom),r))
x.excdom(r) = x.set dom(iminus(x.get dom(),r))

22 Christian Schulte, Guido Tack

In contrast to thex.set dom(-) operation, the richer set-valued operations are inherently
contracting, and thus safer to use when implementing a propagator.

Iterators also serve as the natural interface for operations on set variables, which are
usually approximated as set intervals defined by a lower and an upper (&#)hé] |

d(x) = [glb(d(x)) .. lub(d(x))] = {s| glb(d(x)) € 5,5C lub(d(x))}

In order to access and update these set bounds, propagators use set-valued operations
based on iterators..gl b() returns a range iterator for ranggi(d(x))), x.| ub() returns
arange iterator for rangdab(d(x))), x.adj gl b(r) updates the domain afto [glb(d(x))U
se(r),lub(d(x))], andx.adj | ub(r) updates the domain afo [glb(d(x)),lub(d(x))Nsefr)].

Iterator combinators provide the operations that set propagators need: union, intersec-
tion, difference, and complement. Many propagators can thus be implemented directly using
iterators and do not require any temporary data structures for storing set-valued intermediate
results.

All set-valued operations are parametric with respect to the iteratmy range iterator
can be used. As for parametric propagators, an implementor has to decide on the kind of
parametricity to use. Gecode uses template-based parametric polymorphism, with the per-
formance benefits due to monomorphization and consequent code optimization mentioned
previously.

Advantages. Range iterators provide essential advantages over an explicit set representa-
tion. First, any range iterator regardless of its implementation can be used in domain oper-
ations. This turns out to result in simple, efficient, and expressive domain updates. Second,
no costly memory management is required to maintain a range iterator as it provides access
to only one range at a time. Third, the abstractness of range iterators makes them compatible
with views and derived propagators: the necessary view transformations can be encapsulated
in an iterator, as discussed below.

Iterators for views. As iterators hide their implementation, they are perfectly suited for
implementing the transformations required for set-valued operations on views.

Set-valued operations for constant integer views are straightforward. For a constant view
v on constank, the operation.get dom() returns an iterator for the singleton range se-
quence([k .. k]). The operatiov.set dom(r) just checks whether the range sequenceisf
empty (in order to detect failure).

Set-valued operations for an offset view are provided bypféset iterator For a range

sequence = ([m .. ni])*_, and offsetc, ioffset(r, c) iterates([m +c .. n +c))¥_,. An offset

i=
view onx with offsetc then implementget domas ioffsefx.get dom(),c) andset dom(r)
asx.set dom(ioffset(r,—c)).

For minus views we just give the range sequence, iteration is obvious. For a given
range sequencgny .. nﬂ)!‘;l, the negative sequence is obtained by reversal and sign change
as ([—Nk_i+1 - —rrk,i+1]>!‘:1. The same iterator for this sequence can be used both for
set domand get dom operations. Note that implementing the iterator is involved as it
changes direction of the range sequence. There are two different options for changing direc-
tion: either the set-valued operations accept iterators in both directions or a cache iterator is
used to reverse the direction. Gecode uses the latteBaatibn 8.2valuates the overhead
introduced by cache iterators.

A scale iterator provides the necessary transformations for scale views. Assume a scale
view on a variablex with a coefficienta > 0, and let{[m .. ni})!‘zl be a range sequence

View-based Propagator Derivation 23

for d(x). If a= 1, the scale iterator does not change the range sequence. Otherwise, the
corresponding scaled range sequencg{&x m},{ax (m +1)},....,{axm},....{ax

domain using a se®through a scale view. Assume th@t .. ni}):‘zl is a range sequence
for S Then for 1<i < k the ranged[m;/a] .. |nj/a]] correspond to the required variable
domain forx, however they do not necessarily form a range sequence as the ranges might be
empty, overlapping, or adjacent. Iterating the range sequence is however simple by skipping
empty ranges and merging overlapping or adjacent ranges. Scale views for a vesiadbie
coefficientain Gecode are restricted to be strictly positive so as to not change the direction
of the scaled range sequence. A negative coefficient can be obtained by using a scale view
together with a minus view.

A complement view of a set variableuses acomplement iteratoiwhich given a range
iteratorr iterates ovese(r).

7 Limitations

Although views are widely applicable, they are no silver bullet. This section explores some
limitations of the presented model.

Beyond injective views. Views are required to be injective, as otherwgseo ¢ is no longer

the identity function, and derived propagators would not necessarily be contracting. An ex-
ample for this behavior is a view for the absolute value of an integer variable. Assuming
a variable domaird(x) = {1}, an absolute value viey would leave the domain as it is,

¢ (d)(x) = {1}, but the inverse would “invent” the negative valge, (¢ (d))(x) = {—1,1}.

With an adapted definition of derived propagators, suci@s(d) = ¢~ (p(¢(d))) Nd,
non-injective views could be used — however, many of the proofs in this paper rely on injec-
tivity. Correia [B] shows that some theorems hold for non-injective views,Hetance when
propagators are restricted to bounds reasoning.

Multi-variable views. Some multi-variable views that seem interesting for practical ap-
plications do not preserve contraction, for instance a view on the sum or product of two
variables. The reason is that removing a value through the view would have to result in
removing aupleof values from the domain. As domains can only represent Cartesian prod-
ucts, this is not possible in general. Such a view would have two main disadvantages. First,
if propagation of the original constraint is strong but does not lead to an actual domain prun-
ing through the views, then the potentially high computational cost for the pruning does
not pay off. A cheaper but weaker, dedicated propagation algorithm or a different modeling
with stronger pruning is then a better choice. Second, if views do not preserve contrac-
tion, thenProposition Sdoes not hold. That means that a propaggtoannot easily detect
subsumption any longer, as it would have to detect itf¢p) instead of just for itselfp.
Systems such as Gecode that disable subsumed propagators (as desc/itigdher] lose
this potential for optimization.

For contraction-preserving views on multiple variables, all the theorems still hold. Two
such views we could identify are a set view of Boolean variafides . ., by], behaving like
{i | by = 1}; and an integer view of Boolean variablgs, ..., by], whereb; is 1 if and only
if the integer has valuk as well as the inverse views of these two.

24 Christian Schulte, Guido Tack
[Benchmark [| time (ms)[mem. (KByte)| failures | propagations |
All-Interval (50) 77.74 261 0 6685
All-Interval (100) 170314 837 0 25866
Alpha (naive) 33.74 45 7435 136179
BIBD (7-3-60) 42091 7414 1306 914321
Eg-20 0.47 27 54 3460
Golomb Rulers (Bnd, 10) 17021 125 8890 944651
Golomb Rulers (Dom, 10) 19861 837 8890 936096
Graph Coloring 97.44 6730 1100 125639
Magic Sequence (500) 79.01 8773 251 84086
Magic Sequence (GCC, 500 10584 612 251 3460
Partition (32) 564.87 282 42534 2253419
Perfect Square 49.83 6215 150 291056
Queens (10) 14.98 29 4992 43448
Queens (Dom, 10) 34.55 101 3940 59508
Queens (100) 0.70 356 22 455
Queens (Dom,100) 12.67 2572 8 693
Sorting (400) 507.59 268510 0 459501
Social Golfers (8-4-9) 71.03 14423 32 181290
Social Golfers (5-3-7) 43197 3785 1174 836201
Hamming Codes (20-3-32) 39234 35273 2296 753751
Steiner Triples (9) 39.56 1768 1067 297501
Sudoku (Set, 1) 1.53 116 0 1779
Sudoku (Set, 4) 291 181 1 3180
Sudoku (Set, 5) 12.05 323 11 12875

Table 2 Results for the system with views (vanilla Gecode 3.7.2)

Propagator invariants. Propagators typically rely on certain invariants of a variable do-
main implementation. If idempotency or completeness of a propagator depend on these
invariants, type conversion views lead to problems, as the actual variable implementation
behind the view may not respect the same invariants.

For example, a propagator for set variables based on the set interval approximation can
assume that adjusting the lower bound of a variable does not affect its upper bound. If this
propagator is instantiated with a type conversion view for an ROBDD-based set variable (see
Section 4.3, this invariant is violated: if, for instance, the curremnehin is{{1,2},{3}},
and 1 is added to the lower bound, then 3 is removed from the upper bound (in addition to 2
being added to the lower bound). If a propagator reports that it has computed a fixed point
based on the assumption that the upper bound cannot have changed, it may actually not be at
a fixed point. This potentially results in incorrect propagation, for instance if the propagator
could detect failure if it were run again.

8 Evaluation

While Section Jproved that derived propagators are perfect with respebetoathematical
model, this section shows that in most cases one can also obtain perfect implementations
of derived propagators, not incurring any performance penalties compared to dedicated,
handwritten propagators.

Experimental setup. The experiments are based on Gecode 314 All examples were
compiled using the GNU € compiler gcc 4.4.3, all with the same compiler options (gener-
ating 64 bit code with full optimization G3). The experiments were done on an 8-core Intel

View-based Propagator Derivation 25

[Benchmark [| time % [mem. %] propagations %]
Alpha (naive) 38321 | 36667 67311
BIBD (7-3-60) 337.74 23983 26833
Eg-20 584.80 366.67 70457
Partition (32) 17235 179.08 227.77
Perfect Square 11388 11442 104.65
Queens (Dom, 10) 16351 19505 51968
Queens (Dom,100) 12429 10249 237186
Social Golfers (8-4-9) 23073 24377 16022
Social Golfers (5-3-7) 17360 15918 15189
Hamming Codes (20-3-32)| 11212 105.26 99.65
Steiner Triples (9) 124.62 10181 10176
Sudoku (Set, 1) 14230 11379 11062
Sudoku (Set, 4) 13316 12652 10755
Sudoku (Set, 5) 13244 10991 11055

Table 3 Relative performance of decomposition, compared to views

Core i7 at 2.7 GHz running 64 bit Linux. During the experiments, only one example was
run at a time, with no other processes except for the usual Linux background processes run-
ning, in order to minimize the influence of process scheduling on the results. Runtimes are
the average of 20 runs, with a coefficient of deviation less than 2% for all benchmarks. All
example programs are available in the Gecode distributi@nle 2shows the figures for the
unmodified Gecode 3.7.2 (pure integer models above, models with integer and set variables
below the horizontal line). This version makes full use of views as presented in this paper,
and the results of further experiments will be given relative to these numbers. For example,
a runtime of 130% means that the example needs 30% more time, while 50% means that it
is twice as fast as in vanilla Gecode 3.7.2. The columre shows the runtimemem.the
peak allocated memorfailuresthe number of failures during search, gmdpagationsthe
number of propagator invocations.

As many of the experimental results rely on the optimization capabilities of the used
C+ compiler, we verified that all experiments yield similar results with the Microsoft Visual
Studio 2008 & compiler.

8.1 Views Versus Decomposition

In order to evaluate whether deriving propagators is worth the effort in the first place, this
set of experiments compares derived propagators with their decompositions, revealing a
significant overhead of the latter.

Table 3shows the results of these experiments. Mpha andEqg-2Q linear equations
with coefficients are decomposed. Fgueens 100wve replace the speciall-differentwith-
offsets by its decomposition into ati-differentpropagator and binary equality-with-offset
propagators. IBIBD andPerfect Square, we decompose ternary Boolean propagators, im-
plementingx Ay <> zas—xV -y «+ —zin BIBD, andxV y +» zas—XA -y « —zin Perfect
Square. In the remaining examples, we decompose a set intersection into complement and
union propagators.

Some integer examples show a significant overhead of up to six times the runtime and
memory when decomposed. The overhead of most set examples as Retfext Square
is moderate, partly because no additional variable was introduced if the model already con-
tained its complement or negation. As to be expected, decomposition often needs signifi-

26 Christian Schulte, Guido Tack

[Benchmark | time % [prop. % || Benchmark | time % [prop. % |
All-Interval (50) 99.93 10000 Partition (32) 107.42 10866
All-Interval (100) 10018 10000 Queens (10) 10018 100.00
Alpha (naive) 9855 10000 || Queens (Dom, 10)|| 10157 10000
Golomb Rulers (Bnd, 10) 99.81 99.99 Queens (100) 97.09 10000
Golomb Rulers (Dom, 10)|| 94.34 10000 || Queens (Dom,100 97.22 10000
Graph Coloring 10056 10000 Sorting (400) 10362 10000

Table 4 Relative performance of minus views

cantly more propagation steps, but as the additional steps are performed by cheap propaga-
tors (likex =y+i or x = —y), the runtime effect is less drastQueens 100s an extreme

case, where 23 times the propagation steps only cause 24% more runtime. The reason is
that the scheduling order does not take advantage of the fact that the decompositions are
Berge-acyclic as discussed$ection 5

8.2 Impact of Derivation Techniques

The techniques presented $ection 4have different impacts on the performance of the
derived propagators.

Generalization and specialization. These techniques can be implemented without any per-
formance overhead compared to a handwritten propagator. This is not surprising as the only
potential overhead could be that a function call is not resolved at compile time. For exam-
ple, a thorough inspection of the code generated by the GNto@piler and the Microsoft
Visual Studio G- compiler shows that they are able to fully inline the operations of offset
and scale views.

Transformation and type conversion. These techniques can incur an overhead compared
to a dedicated implementation, as the transformations performed by the views can some-
times not be removed by compiler optimizations, and type conversions may be costly if the
data structures for the variable domains differ significantly.

For example, a propagator instantiated with two minus views of variaddesly may
include a comparisori—x) < (—y). Due to the invariants guaranteed by views, this is equiv-
alent toy < x, saving two negations. However, the asymmetry in the two’s complement rep-
resentation of integers prevents the compiler from performing this optimization. As an ex-
periment to evaluate this effect, we instantiatedbudifferentpropagator with minus views.

The resulting derived propagator of course implements the same constraint, but incurs the
overhead of negation. Similarly, we replaced the max propagator iBdhexample with a

min (where the propagator for min is derived from the propagator for max) and negated all
parameters. According to the resultsTiable 4 the overhead is mostly negligible.

It is interesting to note that the domain-complatiedifferent propagator, when instan-
tiated with minus views, requires a cache iterator for sequence reversal (as discussed in
Section 6.4 Surprisingly, the overhead of minus views is largely inetegient of the use of
cache iterators which is confirmed $ection 8.4

Other transformations are translated optimally, such as turfing — (—y) into y — x.
Boolean negation views also lead to optimal code, as they do not computiofiia Boolean
variablex, but instead swap the positive and negative operations.

View-based Propagator Derivation 27

[Benchmark [| time % [prop. % |[Benchmark [time % | prop. % |
Social Golfers (8-4-9) 14845 10000 Sudoku (Set, 1)[| 14183 11062
Social Golfers (5-3-7) 13030 10060 Sudoku (Set, 4)|| 13315 107.55
Hamming Codes (20-3-32)| 11998 10000 || Sudoku (Set, 5)|| 13331 11055
Steiner Triples (9) 12083 10000

Table 5 Relative performance of views compared to dedicated set propagators

[Benchmark [| time % || Benchmark [time % |
All-Interval (50) 11114 Social Golfers (8-4-9) 12556
All-Interval (100) 107.09 || Social Golfers (5-3-7) 11952
Alpha (naive) 14105 Hamming Codes (20-3-32)| 12020
BIBD (7-3-60) 14048 Steiner Triples (9) 13225
Eqg-20 217.96 || Sudoku (Set, 1) 10939
Golomb Rulers (Bnd, 10) 16343 Sudoku (Set, 4) 11057
Golomb Rulers (Dom, 10) 14619 Sudoku (Set, 5) 10964
Graph Coloring 10532
Magic Sequence (500) 13372
Magic Sequence (GCC, 500) 147.63
Partition (32) 15128
Perfect Square 11907
Queens (10) 11052
Queens (100) 11639

Table 6 Relative performance of virtual method calls

Set-valued transformations can result in non-optimal code. For example, a propagator
for ternary intersectiorx = ynz, will include an inferencex.adj gl b(y.gl b() nzgl b()).
To derive a propagator for=yUz, we instantiate the intersection propagator with comple-
ment views forx, y, andz, yielding the following inference:

x.adj gl b(y.gl b()nzgl b())

which amounts to computing

x.adj | ub(y.l ub()Nnzl ub())

It would be more efficient to implement the equivalerad]j | ub(y.l ub()uzl ub()) be-

cause this requires three set operations less. Unfortunately, no compiler will find this equiv-
alence automatically, as it requires knowledge about the semantics of the set operations.
Table 5compares a dedicated propagator for the constsaing = z with a version using
complement views and a propagator fary = z. The overhead of 20% to 48% does not
render views useless for set variables, but it is nevertheless significant.

8.3 Templates Versus Virtual Methods

As suggested iBection §in C+, compile-time polymorphism using templates is results in

more efficient code than virtual method calls. The reason is not only that a virtual method
call needs an indirection compared to a normal method call, but also (and more importantly)
that virtual calls cannot be inlined. To evaluate this, we changed the basic operations of
integer variables into virtual methods, such that view operations need one virtual method

28 Christian Schulte, Guido Tack

[Benchmark [| time % || Benchmark [time % |
All-Interval (50) 10257 Social Golfers (8-4-9) 46224
All-Interval (100) 10184 Social Golfers (5-3-7) 37174
Golomb Rulers (Bnd, 10) 10033 || Hamming Codes (20-3-32)| 24540
Golomb Rulers (Dom, 10) 10137 Steiner Triples (9) 29040
Graph Coloring 10273 || Sudoku (Set, 1) 26792
Magic Sequence (GCC, 500) 99.60 Sudoku (Set, 4) 26130
Queens (Dom, 10) 12827 Sudoku (Set, 5) 267.92
Queens (Dom,100) 11016

Table 7 Relative performance of cache iterators

call. This is not possible for iterator-based operations, as template methods cannot be vir-
tual in C~. In order to obtain a conservative approximation of virtual template methods, we
prevented the inlining of iterator-based variable operations, so that the compiler at least has
to generate normal function calls. Note that this only affects iterator-based variable oper-
ations and we still compile with full optimization including inlining. The results of these
experiments appear ifiable 6 Virtual method calls and non-inlined iterator-based opera
tions cause a runtime overhead between 5% and 117% for the integer examples (left table),
and 9% to 32% for the set examples (right table). The runtime overhead for set examples
is lower as the basic operations on set variables are considerably more expensive than the
basic operations on integer variables.

8.4 lterators Versus Temporary Data Structures

The following experiments show that using range iterators improves the efficiency of prop-
agators, compared to the use of explicit set data structures for temporary results.

For the experiments, temporary data structures have been emulated by wrapping all iter-
ator combinators in a cache iterator as describ&kiction 6.4That way, every computation
on iterators (such as the union of two iterators) is first computed, then stored in a cache it-
erator, and then read from the cache. The cache iterator thus serves as a set data structure
for temporary results of set operatiofisble 7shows the results. For integer propagators,
computing with temporary data structures incurs very little overhead. Only the Queens ex-
amples, dominated by ttadl-differentconstraints, show an overhead of more than 10%. For
set propagators, which make much more use of iterator combinators than integer propaga-
tors, the overhead becomes prohibitive, resulting in up to 4.6 times the runtime. The memory
consumption (not shown in the table) does not increase, because iterators are not stored, and
only few iterators are active at a time.

These results heavily depend on how the variable domains and temporary data structures
are represented. The reported overhead therefore possibly does not carry over if, for instance,
bit vectors are used instead of range sequences.

9 Conclusion
Folklore techniques for deriving propagator variants from parametric propagators have been

used by constraint programming system implementors for decades. This paper has consoli-
dated the existing approaches into the concept of ugmgsto derive propagator variants.

View-based Propagator Derivation 29

Such variants are ubiquitous, and the paper has shown heystematicall\derive propa-
gators using different types of views, corresponding to techniques such as transformation,
generalization, specialization, and type conversion.

Based on a formal, implementation independent model of propagators and views, the pa-
per has identified fundamental properties of views that resipieifectderived propagators.

The paper has shown that a derived propagator inherits correctness and domain complete-
ness from its original propagator, and bounds completeness given additional properties of
the used views.

The paper has presented an implementation architecture for views bagadoretric-
ity. The propagator implementation is kept parametric over the type of view that is used, so
that deriving a propagator amounts to instantiating a parametric propagator with the proper
views. This implementation architecture is an orthogonal layer of abstraction that can be
implemented on top of any constraint solver.

An empirical evaluation has shown that views have proven invaluable for the implemen-
tation of Gecode, saving huge amounts of code to be written and maintained. Furthermore,
deriving propagators usingCtemplates has been shown to yield competitive (in many
cases optimal) performance compared to dedicated handwritten propagators. The experi-
ments have also clarified that deriving propagators is vastly superior to decomposing the
constraints into additional variables and simple propagators.

Acknowledgements We thank Mikael Lagerkvist, Gert Smolka, and Thibaut Feydy for fruitful discussions,
and the reviewers of earlier versions and drafts of this paper for their constructive comments. Christian Schulte
has been partially funded by the Swedish Research Council (VR) under grant 621-2004-4953. NICTA is
funded by the Australian Government as represented by the Department of Broadband, Communications and
the Digital Economy and the Australian Research Council through the ICT Centre of Excellence program.
Most of the research for this paper was done while Guido Tack was at the Programming Systems Lab, Saar-
land University, Germany.

References

1. Apt, K.R.: Principles of Constraint Programming. Cambridge University Press, Cambridge, UK (2003)

2. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based Scheduling. International Series in Operations
Research & Management Science. Kluwer Academic Publishers (2001)

3. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. Journal
of the ACM 30(3), 479-513 (1983)

4. Beldiceanu, N., Katriel, I., Thiel, S.: Filtering algorithms for the same constraint. In: Régin and Rueher
[36], pp. 65-79

5. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint solver. In: H. Glaser,
P.H. Hartel, H. Kuchen (eds.) Programming Languages: Implementations, Logics, and PradN@ss,
vol. 1292, pp. 191-206. Springer, Southampton, UK (1997)

6. Choi, C.W., Harvey, W., Lee, J.H.M., Stuckey, P.J.: Finite domain bounds consistency revisited. In:
A. Sattar, B.H. Kang (eds.) Al 2006: Advances in Atrtificial Intelligent®&CS vol. 4304, pp. 49-58.
Springer (2006)

7. Corporation, I.: IBM ILOG CP Optimizer V2.3 User's Manual (2009)

8. Correia, M.: Modern techniques for constraint solving: The CaSPER experience. Ph.D. thesis, Univer-
sidade Nova de Lisboa (2010)

9. Correia, M., Barahona, P.: Type parametric compilation of algebraic constraints. In: L.S. Lopes, N. Lau,
P. Mariano, L.M. Rocha (eds.) EPIANCS vol. 5816, pp. 201-212. Springer (2009)

10. Driesen, K., Holzle, U.: The direct cost of virtual function calls in C++. In: OOPSLA, pp. 306-323
(1996)

11. Eeén, N., Sorensson, N.: An extensible SAT-solver. In: E. Giunchiglia, A. Tacchella (eds.) Theory and
Applications of Satisfiability Testind,NCS vol. 2919, pp. 502-518. Springer, Santa Margherita Ligure,
Italy (2004)

12. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In:1Gpm. 352—-366

30

Christian Schulte, Guido Tack

13.

14.

15.

16.

17.
18.

19.
20.

21.

22.

23.
24.
25.
26.

27.
. Puget, J.F.: PECOS: A high level constraint programming language. In: Proceedings of the first Singa-

29.
30.
31.
32.
33.

34.

Gent, |.P. (ed.): Fifteenth International Conference on Principles and Practice of Constraint Program-
ming,LNCS vol. 5732. Springer (2009)

Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In: G. Brewka, S. Corade-
schi, A. Perini, P. Traverso (eds.) ECAlrontiers in Artificial Intelligence and Applicationsol. 141,

pp. 98-102. IOS Press (2006)

Gent, I.P., Jefferson, C., Miguel, |.: Watched literals for constraint propagation in Minion. In: F. Ben-
hamou (ed.) Twelfth Internation Conference on Principles and Practice of Constraint Programming,
LNCS vol. 4204, pp. 182—-197. Springer, Nantes, France (2006)

Gervet, C.: Conjunto: Constraint logic programming with finite set domains. In: M. Bruynooghe (ed.)
International Symposium on Logic Programming, pp. 339-358. MIT Press, Ithaca, NY, USA (1994)
Google: Google or-tool$t t p: / / code. googl e. com p/ or -t ool s/ (2012)

Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, third edn. Addison-Wesley
Professional (2005)

Harvey, W., Stuckey, P.J.: Improving linear constraint propagation by changing constraint representation.
Constraints7, 173-207 (2003)

Hawkins, P., Lagoon, V., Stuckey, P.J.: Solving set constraint satisfaction problems using ROBDDs.
Journal of Artificial Intelligence Resear@, 109-156 (2005)

Hblzle, U., Ungar, D.: Optimizing dynamically-dispatched calls with run-time type feedback. In: PLDI
'94: Proceedings of the ACM SIGPLAN 1994 conference on Programming language design and imple-
mentation, pp. 326-336. ACM, New York, NY, USA (1994). DOI http://doi.acm.org/10.1145/178243.
178478

Laburthe, F.: Choco: Implementing a CP kernel. In: N. Beldiceanu, W. Harvey, M. Henz, F. Laburthe,
E. Monfroy, T. Miller, L. Perron, C. Schulte (eds.) Proceedings of TRICS: Techniques foR Implementing
Constraint programming Systems, a post-conference workshop of CP 2000, pp. 71-85 (2000)
Lagerkvist, M.Z., Pesant, G.: Modeling irregular shape placement problems with regular constraints. In:
First Workshop on Bin Packing and Placement Constraints BPPC'08 (2008)

Lagerkvist, M.Z., Schulte, C.: Propagator groups. In: Geslt pp. 524-538

Mackworth, A.: Consistency in networks of relations. Atrtificial Intellige®#), 99-118 (1977)

Milner, R., Tofte, M., MacQueen, D.: The Definition of Standard ML. MIT Press, Cambridge, MA, USA
(2997)

Peyton Jones, S.L.: Haskell 98. Journal of Functional Programb3{ig (2003)

pore international conference on Intelligent Systems (SPICIS), pp. 137-142. Singapore (1992)

Puget, J.F.: A € implementation of CLP. In: Proceedings of the Second Singapore International Con-
ference on Intelligent Systems (SPICIS), pp. B256-B261. Singapore (1994)

Puget, J.F.: A fast algorithm for the bound consistency of alldiff constraints. In: Proceedings of the 15th
National Conference on Artificial Intelligence, pp. 359-366. AAAI Press, Madison, WI, USA (1998)
Quimper, C.G.: Efficient propagators for global constraints. Ph.D. thesis, University of Waterloo, Canada
(2006)

Régin, J.C., Rueher, M. (eds.): Integration of Al and OR Techniques in Constraint Programming for
Combinatorial Optimization ProblemsNCS vol. 3011. Springer (2004)

Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of the Twelfth
National Conference on Artificial Intelligence, pp. 362—367. AAAI Press, Seattle, WA, USA (1994)
Schulte, C., Carlsson, M.: Finite domain constraint programming systems. In: F. Rossi, P. van Beek,
T. Walsh (eds.) Handbook of Constraint Programming, chap. 14, pp. 495-526. Elsevier Science Publish-
ers, Amsterdam, The Netherlands (2006)

. Schulte, C., Lagerkvist, M., Tack, G.: Gecodew. gecode. or g (2012)
. Schulte, C., Stuckey, P.J.: When do bounds and domain propagation lead to the same search space?

Transactions on Programming Languages and Sys2&(83, 388—425 (2005)

. Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. Transactions on Programming Lan-

guages and Systen34(1), 2:1-2:43 (2008)

. Schulte, C., Tack, G.: Weakly monotonic propagators. In: Get pp. 723-730

. Swedish Institute of Computer Science: SICStus Prolog (2042). si cs. se/ si cst us/

. The CHOCO team: CHOCOt t p: / / www. emm. fr/ z- i nf o/ choco- sol ver/ (2012)

. The ECLP& project: ECLPS. www. ecl i pse- cl p. or g (2012)

. The Mozart consortium: The Mozart programming systemw. nozar t - 0z. or g (2012)

. Van Hentenryck, P., Saraswat, V.A., Deville, Y.: Design, implementation, and evaluation of the constraint

language cc(FD). Journal of Logic ProgrammBig(1-3) 293-316 (1998)

. Vilim, P.:O(nlogn) filtering algorithms for unary resource constraint. In: Régin and Ruei@r fpp.

335-347

http://http://code.google.com/p/or-tools/
http://www.gecode.org
http://www.sics.se/sicstus/
http://http://www.emn.fr/z-info/choco-solver/
http://www.eclipse-clp.org
http://www.mozart-oz.org

	1 Introduction
	2 Preliminaries
	3 Views
	4 Propagator Derivation Techniques
	5 Related Work
	6 Implementation
	7 Limitations
	8 Evaluation
	9 Conclusion

