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View-based Propagator Derivation

Christian Schulte · Guido Tack

Abstract When implementing a propagator for a constraint, one must decide about vari-
ants: When implementing min, should one also implement max? Should one implement lin-
ear constraints both with unit and non-unit coefficients? Constraint variants are ubiquitous:
implementing them requires considerable (if not prohibitive) effort and decreases maintain-
ability, but will deliver better performance than resorting to constraint decomposition.

This paper shows how to useviewsto derivepropagator variants, combining the effi-
ciency of dedicated propagator implementations with the simplicity and effortlessness of
decomposition.

A model for views and derived propagators is introduced. Derived propagators are
proved to beperfect in that they inherit essential properties such as correctness and do-
main and bounds consistency. Techniques for systematically deriving propagators such as
transformation, generalization, specialization, and type conversion are developed. The paper
introduces an implementation architecture for views that is independent of the underlying
constraint programming system. A detailed evaluation of views implemented in Gecode
shows that derived propagators are efficient and that views often incur no overhead. Views
have proven essential for implementing Gecode, substantially reducing the amount of code
that needs to be written and maintained.

1 Introduction

When implementing a propagator for a constraint, one typically must also decide whether
to implement some of its variants. When implementing a propagator for the constraint
max{x1, . . . ,xn} = y, should one also implement min{x1, . . . ,xn} = y? The latter can be
implemented using the former as max{−x1, . . . ,−xn} = −y. When implementing a prop-
agator for the linear equation∑n

i=1 aixi = k for integer variablesxi and integersai andk,
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should one also implement the special case∑n
i=1 xi = k for better performance? When im-

plementing a propagator for the reified linear equation(∑n
i=1 xi = c)↔ b, should one also

implement(∑n
i=1 xi 6= c)↔ b? These two constraints only differ by the sign ofb, as the latter

is equivalent to(∑n
i=1 xi = c)↔¬b.

The two straightforward approaches for implementing constraint variants are to ei-
ther implement dedicated propagators for the variants, or to decompose. In the last exam-
ple, for instance, the reified constraint could be decomposed into two propagators, one for
(∑n

i=1 xi = c)↔ b′, and one forb↔¬b′, introducing an additional variableb′.
Implementing the variants inflates code and documentation and is error prone. Given

the potential code explosion, one may be able to only implement some variants (say, min
and max). Other variants important for performance (say, ternary min and max) may be
infeasible due to excessive programming and maintenance effort. Decomposing, on the other
hand, massively increases memory consumption and runtime.

A third approach, and the one we follow in this paper, is toderivepropagators, combin-
ing the efficiency of dedicated propagator implementations with the simplicity and effort-
lessness of decomposition.

Techniques for deriving propagators have been used in constraint programming sys-
tems for a long time. Some techniques have been the topic of extensive previous research,
like the indexicalsapproach, which derives propagators from range expressions [5,43].
Other similar techniques are part of the constraint programming folklore and exist in im-
plementations such as integerexpressionsin IBM ILOG CP Optimizer [24] and Google
or-tools [19], which can be regarded as generalized bi-directional indexicals, orliterals in
SAT solvers [12], which combine Boolean variables with negation.

In this paper, we consolidate this long line of work by presenting a model for propagator
derivation that allows us to analyze the properties of derived propagators, and by discussing
and evaluating implementation strategies.

We call the basic building block for propagator derivation aview. A view can be re-
garded as a restricted form of a bi-directional indexical or expression, where the restrictions
have been chosen carefully such that the resulting derived propagator satisfies important
properties concerning correctness and effectiveness, and such that the implementation does
not incur any overhead.

The following example shows how to derive a propagator using views.

Example 1 (Deriving a minimum propagator) Consider a propagator for the constraint
max(x,y)=z. Given three additional propagators forx′ =−x,y′ =−y, andz′=−z, we could
propagate the constraint min(x′,y′) = z′ using the propagator for max(x,y) = z. Instead of
these three additional propagators, we will derive a propagator for max from the propagator
for min using views that perform the simple negation transformations.

Views transform input and output of a propagator. For example, a minus view on a
variablex transforms the variable domain ofx by negating each element, passes the trans-
formed domain to the propagator, and performs the inverse transformation on the domain
returned by the propagator. With views, the implementation of the maximum propagator can
be reused: a propagator for the minimum constraint can be derived from a propagator for the
maximum constraint and a minus view for each variable. ∗

While the underlying technique is not new, this paper presents the first thorough aca-
demic discussion of deriving propagators using views. We systematically explore thescope
of this technique, establish thepropertiesof derived propagators, discuss thelimitations
given the desired properties, and present and evaluate differentimplementation techniques
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includingcompile-timeresolution of views. The evaluation shows that views are widely ap-
plicable, drastically reduce programming effort, and yield efficient propagators in practice.

More specifically, we identify the properties of views that are essential for derivingper-
fectpropagators. The paper establishes a formal model that defines a view as a function and
a derived propagator as functional composition of views (mapping values to values) with a
propagator (mapping domains to domains). This model enables us to reason about derived
propagators: they are indeed propagators; they faithfully implement the intended constraints;
domain consistency carries over to derived propagators; different forms of bounds consis-
tency over integer variables carry over provided that the views satisfy additional yet natural
properties.

We introduce techniques for deriving propagators that use views for transformation,
generalization, specialization, and type conversion of propagators. We show how to apply
these techniques for different variable domains using various views and how views can be
used for the derivation of dual scheduling propagators.

We present and evaluate different implementation approaches for views and derived
propagators. An implementation using parametric polymorphism (such as templates in C++)
is shown to incur no or very low overhead. The architecture is orthogonal to the used con-
straint programming system and has been fully implemented in Gecode [14]. Views have
proven essential for implementing Gecode – the technique is applicable to most propagators
and results in a substantial reduction of the amount of code that needs to be written and
maintained.

Plan of the paper. Section 2introduces constraints and propagators.Section 3establishes
views and propagator derivation.Section 4presents techniques for propagator derivation.
Section 5discusses related approaches.Section 6describes an implementation architec-
ture based on parametric propagators and range iterators.Section 7discusses limitations
of views. The implementation is evaluated inSection 8, andSection 9concludes the paper.

2 Preliminaries

This section introduces the notation used in the rest of the paper for constraints, propagators,
and propagation strength.

Variables, constraints, and domains.Constraint satisfaction problems use afinite set of
variables Xand afinite set of values V. We typically write variables asx,y,z∈ X and values
asv,w∈V.

A solution of a constraint satisfaction problem assigns a single value to each variable. A
constraint restricts which assignments of values to variables are allowed.

Definition 1 (Assignments and constraints) An assignment ais a function mapping vari-
ables to values. The set of all assignments isAsn = X → V. A constraint cis a set of as-
signments,c∈ Con = P(Asn) = P(X →V) (we writeP(S) for the power set ofS). Any
assignmenta∈ c is asolutionof c. ∗

Constraints are defined on assignments as total functions on all variables. For a typical
constraintc, only a subset vars(c) of the variables issignificant; the constraint is the full
relation for allx /∈ vars(c). Constraints are either written as sets of assignments (for example,
{a∈ Asn | a(x)< a(y)}) or as expressions with the usual meaning, using the notationJ·K (for
example,Jx< yK).
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Example 2 (Sum constraint) Let X = {x,y,z} andV = {1,2,3,4}. The sum constraint
Jx= y+zK corresponds to the following set of assignments:

Jx= y+zK = {(x 7→ a,y 7→ b,z 7→ c) | a,b,c∈V ∧a= b+c}

= {(x 7→ 2,y 7→ 1,z 7→ 1),(x 7→ 3,y 7→ 1,z 7→ 2),

(x 7→ 3,y 7→ 2,z 7→ 1),(x 7→ 4,y 7→ 2,z 7→ 2),

(x 7→ 4,y 7→ 1,z 7→ 3),(x 7→ 4,y 7→ 3,z 7→ 1)} ∗

Definition 2 (Domains) A domain dis a function mapping variables to sets of values, such
that d(x) ⊆ V. The set of all domains isDom = X → P(V). The set of values ind for
a particular variablex, d(x), is called thevariable domainof x. The following definition
expresses that any domaind can be regarded as a set of assignments, and thus a constraint:

con(d) = {a∈ Asn | ∀x∈ X : a(x)∈ d(x)}

An assignmenta∈ con(d) is licensedby d. ∗

Domains thus representCartesiansets of assignments. In this sense, any domain is
also a constraint. For a more uniform representation, we take the liberty to use domains as
constraints. In particular,a∈ d (instead ofa∈ con(d)) denotes an assignmenta licensed by
d, andc∩d denotesc∩con(d).

A domaind that maps some variable to the empty value set isfailed, writtend = /0, as it
represents no valid assignments (con(d) = /0). A domaind representing a single assignment,
con(d) = {a}, is assigned, and is written asd = {a}.

Definition 3 (Constraint satisfaction problems) A constraint satisfaction problem(CSP)
is a pair〈d,C〉 of a domaind and a set of constraintsC. The solutionsof a CSP〈d,C〉
are the assignments licensed byd that satisfy all constraints inC, defined as sol(〈d,C〉) =
{a∈ con(d) | ∀c∈C : a∈ c}. ∗

Propagators. A propagation-based constraint solver employspropagatorsto implement
constraints. A propagator for a constraintc takes a domaind as input and removes values
from the variable domains ind that are in conflict withc.

A domaind is strongerthan a domaind′, writtend ⊆ d′, if and only if d(x)⊆ d′(x) for
all x∈ X. A domaind is strictly strongerthan a domaind′, writtend⊂ d′, if and only ifd is
stronger thand′ andd(x)⊂ d′(x) for some variablex. The goal of constraint propagation is
to prune values from variable domains, thus inferring stronger domains, without removing
solutions of the constraints.

A propagator is a functionp that takes a domain as its argument and returns a stronger
domain, it may onlypruneassignments. If the original domain is an assigned domain{a},
the propagator either accepts (p({a}) = {a}) or rejects (p({a}) = /0) it. We can therefore
say that a propagator realizes adecision procedurefor the unique constraint defined by
all accepted assignments. The pruning and the decision procedure must be consistent: if
the decision procedure accepts an assignment, the pruning procedure must never remove
this assignment from any domain. This property is enforced by requiring propagators to be
monotonic. The following definition captures these properties.

Definition 4 (Propagators) A propagatoris a functionp∈ Dom→ Dom that is

■ contracting: p(d) ⊆ d for any domaind;
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■ monotonic: p(d′)⊆ p(d) for any domainsd′ ⊆ d.

The set of all propagators isProp. If a propagatorp returns astrictly stronger domain
(p(d) ⊂ d), we say thatp prunes the domain d. The propagatorp inducesthe unique con-
straintcp defined by the set of assignments accepted byp:

cp = {a∈ Asn | p({a}) = {a}} ∗

Propagators can also beidempotent(p(p(d)) = p(d) for any domaind). Idempotency is
not required to make propagation sound or complete, but it can make propagation more effi-
cient [40]. Like idempotency, monotonicity as defined here is not necessary for soundness or
completeness of a solver [41]. Most definitions and theorems in this paper are independent
of whether propagators are monotonic or not. Non-monotonicity will thus only be discussed
where it is relevant.

The propagator defined aspU (d) = d induces the universal constraint (i.e., it does not
prune anything), whilep/0(d) = /0 induces the empty constraint (which does not permit any
solution). Note that, contrary to other popular definitions,pU is not a “valid” propagator for
arbitrary constraints, it merely induces a constraint that is weaker than any other constraint.

Propagation strength. Each propagator induces a single constraint, but different propaga-
tors inducing the same constraint can differ instrength. Typical examples are propagators
for the all-different constraint that perform naive pruning when variables are assigned, or
establish bounds consistency [34] or domain consistency [37].

In the literature, propagation strength is usually defined as a property of a domain in
relation to a constraint. For example, a domaind is domain-consistent(also known as gen-
eralized arc-consistent) with respect to a constraintc if d(x) only contains values that appear
in at least one solution ofc for each variablex. As this paper is concerned with propagators,
propagation strength is defined with respect to a propagator.

A propagatorp is domain-completeif any domain it returns is domain-consistent with
respect tocp. For any constraintc, there is exactly one domain-complete propagator for
c (as domains form a lattice). It is defined as ˆpc(d) = dom(cp ∩ d), where dom(c) is the
domain relaxationof c, the strongest domain that contains all assignments ofc, dom(c) =
min{d | c⊆ d}.

For constraints over integer variables (V ⊆ Z), several weaker notions of propagation
strength are known. The most well-known isbounds consistency, which in fact can mean
one of four special cases: range, bounds(D), bounds(Z), and bounds(R) consistency (as
discussed in [7,35]).

The first three differ in whether holes are ignored in the original domain, in the resulting
domain, or in both, in that order. Holes in a domain are ignored by the function hull(d)(x) =
[min(d(x)) .. max(d(x))], which returns the convex hull of a variable domaind(x) in Z.
Bounds(R) consistency only requires solutions to be found in the real-valued relaxation of
the constraint (writtencR), and is defined using the real-valued convex hull and domain
relaxation (written hullR and domR). The different notions of bounds consistency give rise
to the respective definitions of bounds completeness.

Definition 5 (Bounds completeness)A propagatorp is
■ range-complete if and only ifp(d) ⊆ dom(cp∩hull(d)),
■ bounds(D)-complete if and only ifp(d) ⊆ hull(dom(cp∩d)),
■ bounds(Z)-complete if and only ifp(d)⊆ hull(dom(cp∩hull(d))), and
■ bounds(R)-complete if and only ifp(d) ⊆ hullR(domR(cpR∩hullR(d)))

for any domaind. ∗
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3 Views

This section defines the formal model for views and derived propagators. Based on this
model, the section proves essential properties of propagators derived using views, such as
correctness and completeness. Derived propagators are thus indeedperfectwith respect to
the formal model.

3.1 Views and Derived Propagators

Given a propagatorp, a view is represented by two functions,ϕ andϕ−, that can be com-
posed withp such thatϕ− ◦ p◦ϕ is the desired derived propagator. The functionϕ trans-
forms the input domain, andϕ− applies the inverse transformation to the propagator’s output
domain.

Definition 6 (Variable views and views) A variable viewϕx ∈V →V ′ for a variablex is
an injective function mapping values to values. The setV ′ may be different fromV, and the
corresponding sets of assignments, domains, constraints, and propagators are calledAsn′,
Dom′, Con′, andProp′, respectively.

Given a family of variable viewsϕx for all x ∈ X, we lift them point-wise to assign-
ments:ϕAsn(a)(x) = ϕx(a(x)). A view ϕ ∈ Con → Con′ is a family of variable views,
lifted to constraints:ϕ(c) = {ϕAsn(a) | a∈ c}. The inverseof a view is defined asϕ−(c) =
{a∈ Asn | ϕAsn(a) ∈ c}. ∗

Definition 7 (Derived propagators and constraints) Given a propagatorp∈ Prop′ and a
view ϕ , thederived propagator̂ϕ(p) ∈ Prop is defined aŝϕ(p) = ϕ− ◦ p◦ϕ . Similarly, a
derived constraintis defined to beϕ−(c)∈ Con for a givenc∈ Con′. ∗

Example 3 (Scale views) Given a propagatorp for the constraintc= Jx= yK, we want to
derive a propagator forc′ = Jx= 2yK using a viewϕ such thatϕ−(c) = c′.

Intuitively, the functionϕ leavesx as it is and scalesy by 2, whileϕ− does the inverse
transformation. We thus defineϕx(v) =v andϕy(v)=2v. That clarifies the need for different
setsV andV ′, asV ′ must contain all elements ofV multiplied by 2.

The derived propagator iŝϕ(p) = ϕ− ◦ p◦ϕ . We say that̂ϕ(p) “uses a scale view on”
y, meaning thatϕy is the function defined asϕy(v) = 2v. Similarly, using an identity view
on x amounts toϕx being the identity function onV.

Given the assignmenta = (x 7→ 2,y 7→ 1), we first applyϕ and getϕ({a}) = {(x 7→
2,y 7→ 2)}. This is accepted byp and returned unchanged, soϕ− transforms it back to{a}.
Another assignmenta′ = (x 7→ 1,y 7→ 2) is transformed toϕ({a′}) = {(x 7→ 1,y 7→ 4)},
rejected (p(ϕ({a′})) = /0), and the empty domain is mapped to the empty domain byϕ−.
The propagator̂ϕ(p) inducesϕ−(c). ∗

3.2 Correctness of Derived Propagators

Derived propagators are well-defined and correct: a derived propagatorϕ̂(p) is in fact a
propagator, and it induces the desired constraint (cϕ̂(p) = ϕ−(cp)). The proofs of these state-
ments employ the following direct consequences of the definitions of views:

P1. ϕ andϕ− are monotonic by construction (asϕ andϕ− are defined point-wise).
P2. ϕ− ◦ϕ = id (the identity function, asϕ is injective).
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P3. |ϕ({a})|= 1, ϕ( /0) = /0.
P4. For any viewϕ and domaind ∈ Dom, we haveϕ(d) ∈ Dom′, and for anyd′ ∈ Dom′,

we haveϕ−(d′) ∈ Dom (as views are defined point-wise).

Proposition 1 (Correctness) For a propagatorp and viewϕ , ϕ̂(p) is a propagator. ∗

Proof. The derived propagator is well-defined because bothϕ(d) andϕ−(d) are domains
(seeP4above). We have to show thatϕ− ◦ p◦ϕ is contracting and monotonic.

For contraction, we havep(ϕ(d))⊆ ϕ(d) asp is contracting. From monotonicity ofϕ−

(with P1), it follows that ϕ−(p(ϕ(d))) ⊆ ϕ−(ϕ(d)). As ϕ− ◦ ϕ = id (with P2), we have
ϕ−(p(ϕ(d)))⊆ d, which proves that̂ϕ(p) is contracting.

Monotonicity is shown as follows for all domainsd′,d with d′ ⊆ d:

ϕ(d′)⊆ ϕ(d) (ϕ monotonic,P1)

=⇒ p(ϕ(d′))⊆ p(ϕ(d)) (p monotonic)

=⇒ ϕ−(p(ϕ(d′)))⊆ ϕ−(p(ϕ(d))) (ϕ− monotonic,P1)

In summary, for any propagatorp, ϕ̂(p) = ϕ− ◦ p◦ϕ is a propagator.

Non-monotonic propagators as defined in [41] must at least beweaklymonotonic, which
means thatp({a})⊆ p(d) for all domainsd and assignmentsa∈ d. The above proof can be
easily adjusted to weakly monotonic propagators by replacingd′ with {a} and usingP3in
the second line of the proof.

Proposition 2 (Induced constraints) Let p be a propagator, and letϕ be a view. Then
ϕ̂(p) induces the constraintϕ−(cp). ∗

Proof. As p inducescp, we knowp({a}) = cp∩{a} for all assignmentsa. With |ϕ({a})|=
1 (P3), we havep(ϕ({a})) = cp∩ϕ({a}). Furthermore, we know thatcp∩ϕ({a}) is either
/0 or ϕ({a}).

■ Case/0: We haveϕ−(p(ϕ({a}))) = /0=
{

a′ ∈ Asn
∣∣ a= a′ ∧ϕAsn(a) ∈ cp

}
= ϕ−(cp)∩

{a}.
■ Caseϕ({a}): With P2, we haveϕ− ◦ϕ = id and henceϕ−(p(ϕ({a}))) = {a}. Further-

more,ϕ−(cp)∩{a}=
{

a′ ∈ Asn
∣∣ a= a′ ∧ϕAsn(a) ∈ cp

}
= {a}.

Together, this shows thatϕ− ◦ p◦ϕ({a}) = {a}∩ϕ−(cp).

Another important property is that views preserve contraction: if a propagatorp prunes
a domain, the pruning will not be lost after transformation byϕ−.

Proposition 3 (Views preserve contraction) Let p be a propagator, letϕ be a view, and
let d be a domain such thatp(ϕ(d))⊂ ϕ(d). Thenϕ̂(p)(d)⊂ d. ∗

Proof. The definition ofϕ−(c) is {a∈ Asn | ϕAsn(a) ∈ c}. Hence,|ϕ−(c)| ≤ |c|. Similarly,
we know that|ϕ(c)|= |c|. From p(ϕ(d)) ⊂ ϕ(d), it follows that |p(ϕ(d))| < |ϕ(d)|. To-
gether, this yields|ϕ̂(p)(d)|< |ϕ(d)|= |d|. We have seen inProposition 1thatϕ̂(p)(d)⊆ d,
so we can conclude that̂ϕ(p)(d)⊂ d.
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3.3 Completeness of Derived Propagators

Ideally, a propagator derived from a domain- or bounds-complete propagator should inherit
its completeness. Unfortunately this turns out not to be true in general for all notions of
completeness and all views. We now first show how bounds(Z) completeness is inherited,
and then generalize this result to the other notions.

The key insight is that bounds(Z) completeness of propagators derived using a viewϕ
depends on whetherϕ andϕ− commute with the hull operator, as defined below.

Definition 8 A constraintc is aϕ-constraintfor a viewϕ if and only if for all a∈ c, there is
ab∈Asn such thata=ϕAsn(b). A view ϕ ishull-injectiveif and only ifϕ−(hull(dom(c)))=
hull(dom(ϕ−(c))) for all ϕ-constraintsc. It is hull-surjectiveif and only if ϕ(hull(d)) =
hull(ϕ(d)) for all domainsd. It is hull-bijective if and only if it is hull-injective and hull-
surjective. ∗

The proofs rely on the additional fact that views commute with set intersection.

Lemma 1 For any viewϕ , the equationϕ−(c1∩c2) = ϕ−(c1)∩ϕ−(c2) holds. ∗

Proof. By definition ofϕ−, we have

ϕ−(c1∩c2) = {a∈ Asn | ϕAsn(a) ∈ c1∧ϕAsn(a) ∈ c2}

As ϕAsn is a function, this is equal to

{a∈ Asn | ϕAsn(a) ∈ c1}∩{a∈ Asn | ϕAsn(a) ∈ c2}= ϕ−(c1)∩ϕ−(c2)

Theorem 1 (Bounds(Z) completeness) Let p be a bounds(Z)-complete propagator. For
any hull-bijective viewϕ , the propagator̂ϕ(p) is bounds(Z)-complete. ∗

Proof. From Proposition 2, we know thatϕ̂(p) induces the constraintϕ−(cp). By mono-
tonicity of ϕ− (with P1) and bounds(Z) completeness ofp, we know that

ϕ− ◦ p◦ϕ(d)⊆ ϕ−(hull(dom(cp∩hull(ϕ(d)))))

We now use the fact that bothϕ− andϕ commute with hull(·) and set intersection:

ϕ−(hull(dom(cp∩hull(ϕ(d)))))

= ϕ−(hull(dom(cp∩ϕ(hull(d))))) (hull-surjective)

= hull(dom(ϕ−(cp∩ϕ(hull(d))))) (hull-injective)

= hull(dom(ϕ−(cp)∩ϕ−(ϕ(hull(d))))) (commute with∩)

= hull(dom(ϕ−(cp)∩hull(d))) (P2)

The second step uses hull injectivity, so it requirescp∩ϕ(hull(d)) to be aϕ-constraint. All
assignments in aϕ-constraint have to be the image of some assignment underϕAsn. This is
the case here, as the intersection withϕ(hull(d)) can only contain such assignments. So in
summary, we get

ϕ− ◦ p◦ϕ(d) ⊆ hull(dom(ϕ−(cp)∩hull(d))

which is the definition of̂ϕ(p) being bounds(Z)-complete.
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Stronger notions of completeness.Similar theorems hold for domain completeness, range
and bounds(Z) completeness. The theorems directly follow from the fact that any viewϕ
is domain-injective, meaning thatϕ−(dom(c)) =dom(ϕ−(c)) for all constraintsc. We split
this statement into the following two lemmas.

Lemma 2 Given a constraintc, let d = dom(c). Then for allx ∈ X, we havev ∈ d(x)⇔
∃a∈ c : a(x) = v. ∗

Proof. We prove both directions of the equivalence:

⇒ There must be such an assignmentabecause otherwise one can construct a strictly
strongerd′ ⊂ d with v /∈ d′(x) such that stillc⊆ d′.

⇐ Each domaind′ in the intersection
⋂
{d′ ∈ Dom | c⊆ con(d′)} must contain the

valuev∈ d′(x) asc⊆ d′. So for the result of the intersectiond, v∈ d(x).

Lemma 3 Any view ϕ is domain-injective. ∗

Proof. We have to show thatϕ−(dom(c)) = dom(ϕ−(c)) holds for any constraintc and
any view ϕ . For clarity, we write the equation including the implicit con(·) operations:
ϕ−(con(dom(c))) = con(dom(ϕ−(c))). By definition ofϕ− and con(·), we have

ϕ−(con(dom(c))) = {a∈ Asn | ∀x∈ X : ϕAsn(a)(x)∈ dom(c)(x)}

= {a∈ Asn | ∀x∈ X ∃b∈ c : ϕAsn(a)(x) = b(x)} (Lemma 2)

AsϕAsn is an injective function, we can find such ab that is in the range ofϕAsn, if and only
if there is also ab′ ∈ ϕ−(c) such thatϕAsn(b′) = b. Therefore, we get

{
a∈ Asn

∣∣ ∀x∈ X ∃b′ ∈ ϕ−(c) : a(x) = b′(x)
}

=
{

a∈ Asn
∣∣ ∀x∈ X : a(x)∈ dom(ϕ−(c))(x)

}

=con(dom(ϕ−(c)))

The following three theorems express under which conditionsthe different notions of
completeness are preserved when deriving propagators. The proofs for these theorems are
analogous to the proof ofTheorem 1, usingLemma 3.

Theorem 2 (Bounds(D) completeness) Let p be a bounds(D)-complete propagator. For
any hull-injective viewϕ , the propagator̂ϕ(p) is bounds(D)-complete. ∗

Theorem 3 (Range completeness)Let p be a range-complete propagator. For any hull-
surjective viewϕ , the propagator̂ϕ(p) is range-complete. ∗

Theorem 4 (Domain completeness)Let p be a domain-complete propagator, and letϕ be
a view. Thenϕ̂(p) is domain-complete. ∗

This last theorem is particularly interesting. It states that deriving a propagator from a
domain-complete propagator yields a domain-complete propagator, no matter what view is
used.

An additional case not discussed above is a propagator derived from a bounds(Z)-
complete propagator and a hull-injective but not hull-surjective view. This is a common
case, as for example scale views and propagators for linear constraints fall in this category.
The resulting propagator is, in general, only bounds(R)-complete. This is exactly what we
would expect from a propagator for linear equations, as the next example demonstrates.
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Example 4 (Linear constraints) A propagator for a linear constraintc∑ = J∑n
i=1 xi = cK

andn scale views (seeExample 3) yield a propagator for a linear constraint with coefficients
c∑a = J∑n

i=1 aixi = cK.
The usual propagator for a linear constraint with coefficients achieves bounds(R) con-

sistency in linear timeO(n) [21]. However, it is bounds(Z)-complete for unit coefficients.
Hence, the above-mentioned property applies: The propagator forc∑ is bounds(Z)-complete,
scale views are only hull-injective, so the derived propagator forc∑a is bounds(R)-complete.
Implementing the simpler propagator without coefficients and deriving the variant with co-
efficients yields propagators with exactly the same runtime complexity and propagation
strength as manually implemented propagators. ∗

3.4 Additional Properties of Derived Propagators

The following discussion shows how views can be composed, and how derived propagators
behave with respect to idempotency and subsumption.

View composition. A derived propagator permits further derivation. Consider a propagator
p and two viewsϕ ,ϕ ′. Then ϕ̂ ′(ϕ̂(p)) is a perfectly acceptable derived propagator, and
properties like correctness and completeness carry over transitively. For instance, we can
derive a propagator forJx−y = cK from a propagator forJx+y = 0K, combining anoffset
view (ϕy(v) = v+ c) and aminus view(ϕ ′

y(v) = −v) on y. This yields a propagator for
Jx+(−(y+c)) = 0K = Jx−y= cK.

Fixed points. Schulte and Stuckey [40] show how to optimize the scheduling of propaga-
tors that are known to be at a fixed point. Views preserve fixed points of propagators, so the
same optimizations apply to derived propagators.

Proposition 4 Let p be a propagator, letϕ be a view, and letd be a domain. Ifϕ(d) is a
fixed point ofp, thend is a fixed point ofϕ̂(p). ∗

Proof. Assumep(p(ϕ(d))) = p(ϕ(d)). We have to shoŵϕ(p)(d) = ϕ̂(p)(ϕ̂(p)(d)). With
the assumption, we can writêϕ(p)(d) = (ϕ− ◦ p◦ p◦ϕ)(d). We know thatϕ ◦ϕ−(c) = c if
|ϕ−(c)|= |c|. As we first applyϕ , this is the case here, so we can addϕ ◦ϕ− in the middle,
yielding (ϕ− ◦ p◦ (ϕ ◦ϕ−)◦ p◦ϕ)(d). With function composition being associative, this is
equal toϕ̂(p)(ϕ̂(p)(d)).

Subsumption. A propagator issubsumed(also known as entailed) by a domaind if and
only if for all stronger domainsd′ ⊆ d, p(d′) = d′. Subsumed propagators cannot do any
pruning in the remaining subtree of the search, and can therefore be removed. Deciding
subsumption is coNP-complete in general, but for many practically relevant propagators
an approximation can be decided easily (such as when a domain becomes assigned). The
following theorem states that the approximation is also valid for the derived propagator.

Proposition 5 Let p be a propagator and letϕ be a view. The propagator̂ϕ(p) is subsumed
by a domaind if and only if p is subsumed byϕ(d). ∗

Proof. With P2we get that∀d′ ⊆ d : ϕ−(p(ϕ(d′))) = d′ is equivalent to

∀d′ ⊆ d : ϕ−(p(ϕ(d′))) = ϕ−(ϕ(d′))
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As ϕ− is a function, and because it preserves contraction (seeProposition 3), this is
equivalent to∀d′ ⊆ d : p(ϕ(d′)) = ϕ(d′). This can be rewritten to∀d′′ ⊆ ϕ(d) : p(d′′) = d′′

because allϕ(d′) are subsets ofϕ(d).

4 Propagator Derivation Techniques

This section introduces systematic techniques for deriving propagators using views. The
techniques capture the transformation, generalization, specialization, and type conversion
of propagators and are shown to be widely applicable across different variable domains and
application areas.

4.1 Transformation

Boolean connectives.For Boolean variables, whereV = {0,1}, the only view apart from
identity for Boolean variables captures negation. Anegation viewonx definesϕx(v) =1−v
for x ∈ X andv ∈ V. Deriving propagators using Boolean views thus means to propagate
usingliterals rather than variables.

The obvious application of negation views is to derive propagators for all Boolean con-
nectives from just three propagators. A negation view forx in x= y yields a propagator for
¬x= y. From disjunctionx∨y= zone can derive conjunctionx∧y= zwith negation views
onx, y, z, and implicationx→ y= zwith a negation view onx. From equivalencex↔ y= z
one can derive exclusive orx⊕y= zwith a negation view onz.

As Boolean constraints are widespread, it pays off to optimize frequently occurring
cases of propagators for Boolean connectives. One important propagator is for

∨n
i=1 xi = y

with arbitrarily many variables. Again, conjunction can be derived with negation views on
the xi and ony. Another important propagator implements the constraint

∨n
i=1 xi = 1. A

dedicated propagator for this constraint is essential as the constraint occurs frequently and
can be implemented efficiently using watched literals, see for example [17]. With views all
implementation work is readily reused for conjunction. This shows a general advantage of
views: effort put into optimizing a single propagator directly pays off for all other propaga-
tors derived from it.

Boolean cardinality. Like the constraint
∨n

i=1 xi = 1, the Boolean cardinality constraint
∑n

i=1 xi ≥ c occurs frequently and can be implemented efficiently using watched literals (re-
quiring c+1 watched literals, Boolean disjunction corresponds to the case wherec = 1).
But also a propagator for∑n

i=1 xi ≤ c can be derived using negation views on thexi with the
following transformation:

∑n
i=1 xi ≤ c ⇐⇒ −∑n

i=1 xi ≥−c ⇐⇒ n−∑n
i=1 xi ≥ n−c

⇐⇒ ∑n
i=1 1−xi ≥ n−c ⇐⇒ ∑n

i=1¬xi ≥ n−c

Reification. Many reified constraints (such as(∑n
x=1 xi = c)↔ b) also exist in a negated

version (such as(∑n
x=1 xi 6= c)↔ b). Deriving the negated version is trivial by using a nega-

tion view on the Boolean control variableb. This contrasts nicely with the effort without
views: either the entire code must be duplicated or the parts that perform checking whether
the constraint or its negation is subsumed must be factored out and combined differently for
the two variants.
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tt ′

0 2 5 8 11−2−5−8−11

est(t) ect(t) lst(t) lct(t)lct(t ′)lst(t ′)ect(t ′)est(t ′)
Fig. 1 Taskt and its dual taskt ′ using a minus view

Transformation using set views. Set constraints deal with variables whose values are fi-
nite sets. Usingcomplement views(analogous to Boolean negation, as sets with their usual
operations also form a Boolean algebra) onx,y,z with a propagator forx∩ y = z yields a
propagator forx∪y= z. A complement view ony yieldsx\y= z.

Transformation using integer views. The obvious integer equivalent to negation views
for Boolean variables areminus views:a minus view on an integer variablex is defined as
ϕx(v) =−v. Minus views help to derive propagators following simple transformations: for
example, min(x,y) =zcan be derived from max(x,y) =zby using minus views forx, y, and
z.

Transformations through minus views can improve performance in subtle ways. Con-
sider a bounds(Z)-complete propagator for multiplicationx× y = z (for example, [1, Sec-
tion 6.5] or [39]). Propagation depends on whether zero is still included in the domains ofx,
y, orz. Testing for inclusion of zero each time the propagator is executed may be inefficient,
and it leads to a convoluted implementation. Instead, one would like to rewrite the propaga-
tor to special variants wherex, y, andzare either strictly positive or negative. These variants
can propagate more efficiently, in particular because propagation can easily be made idem-
potent. Instead of implementing three different propagators (x,y,zstrictly positive; onlyx or
y strictly positive; onlyz strictly positive), a single propagator assuming that all views are
strictly positive is sufficient. The other propagators can be derived using minus views.

Again, with views it becomes realistic to optimize a single implementation of a prop-
agator and derive other, equally optimized, implementations. The effort to implement all
required specialized versions without views is typically unrealistic.

Scheduling propagators. An important application area is constraint-based scheduling, see
for example [2]. Many propagation algorithms for constraint-based scheduling are based on
tasks, where a taskt is characterized by its start time, processing time (how long does the
task take to be executed on a resource), and end time. Scheduling algorithms are typically
expressed in terms of earliest start time (est(t)), latest start time (lst(t)), earliest completion
time (ect(t)), and latest completion time (lct(t)).

Another particular aspect of scheduling algorithms is that they are often required in two,
mutually dual, variants. Let us consider not-first/not-last propagation as an example. Assume
a set of tasksT and a taskt 6∈ T to be scheduled on the same resource. Thent cannot be
scheduled before the tasks inT (t is not-first inT ∪{t}), if ect(t)> lst(T) (where lst(T) is a
conservative estimate of the latest start time of all tasks inT). Hence, est(t) can be adjusted
to leave some room for at least one task fromT. The dual variant is thatt is not-last: if
ect(T)> lst(t) (again, ect(T) estimates the earliest completion time ofT), then lct(t) can be
adjusted.

Running the dual variant of a scheduling algorithm on taskst ∈ T is the same as running
the original algorithm on thedual tasks t′ ∈ T ′, which are simply mirrored at the 0-origin of
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the time scale (seeFigure 1):

est(t ′) =− lct(t) ect(t ′) =− lst(t) lst(t ′) =−ect(t) lct(t ′) =−est(t)

The dual variant of a scheduling propagator can be automatically derived using a minus
view that transforms the time values. In our example, only a propagator for not-first needs
to be implemented and the propagator for not-last can be derived (or vice versa). This is in
particular beneficial if the algorithms use sophisticated data structures such asΩ -trees [44].
Here, also the data structure needs to be implemented only once and the dual data structure
for the dual propagator is derived.

4.2 Generalization

Common views for integer variables capture linear transformations of the integer values: an
offset viewfor o ∈ Z on x is defined asϕx(v) = v+o, and ascale viewfor a ∈ Z on x is
defined asϕx(v) = av.

Offset and scale views are useful for generalizing propagators. Generalization has two
key advantages: simplicity and efficiency. A more specialized propagator is often simpler to
implement (and simpler to implementcorrectly) than a generalized version. The specialized
version can save memory and runtime during execution.

We can devise an efficient propagation algorithm for the common case of a linear equal-
ity constraint with unit coefficients∑n

i=1 xi = c. The more general case∑n
i=1 aixi = c can be

derived by using scale views forai on xi (the same technique of course applies to linear
inequalities and disequality rather than equality). A common optimization for the general
case is to determine the greatest common divisor of the coefficientsai and simplify the
equation accordingly. Using views does not preclude this optimization, as the analysis and
simplification can be performed on the model before posting the derived propagator.

Similarly, a propagator forall-different(x1, . . . ,xn) can be generalized toall-different(c1+
x1, . . . ,cn+xn) by using offset views forci ∈ Z on xi . Likewise, from a propagator for the
element constrainta[x] = y for integersa1, . . . ,an and integer variablesx andy, we can de-
rive the generalized versiona[x+o] = y with an offset view, whereo∈ Z provides a useful
offset for the index variablex.

These generalizations can be applied to domain- as well as bounds-complete propa-
gators. While most Boolean propagators are domain-complete, bounds completeness plays
an important role for integer propagators.Section 3.3shows that, given appropriate hull-
surjective and/or hull-injective views, the different notions of bounds consistency are pre-
served when deriving propagators.

The views for integer variables presented in this section have the following properties:
minus and offset views are hull-bijective, whereas a scale view fora ∈ Z on x is always
hull-injective and only hull-surjective ifa= 1 or a= −1 (in which cases it coincides with
the identity view or a minus view, respectively).

4.3 Specialization

We employconstant viewsto specialize propagators. A constant view behaves like an as-
signed variable. In practice, specialization has two advantages. Fewer variables require less
memory. And specialized propagators can be compiled to more efficient code, if the con-
stants are known at compile time.
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Examples for specialization are

■ a propagator for binary linear inequalityx+y≤ c derived from a propagator forx+y+
z≤ c by using a constant 0 forz;

■ a reified propagator for(x= c)↔ b from (x= y)↔ b and a constantc for y;
■ propagators for the counting constraints|{i | xi = c}|= z and|{i | xi = y}|= c from a

propagator for|{i | xi = y}|= z;
■ a propagator for set disjointness from a propagator forx∩ y= z and a constant empty

set forz; and many more.

We have to extend the model in a straightforward way to accommodate constant views.
Propagators may now be defined with respect to a superset of the variables,X′ ⊇ X. A
constant view for the valuek on a variablez∈ X′ \X translates between the two sets of
variables:

ϕ(c) = {a[k/z] | a∈ c} ϕ−(c) =
{

a|X
∣∣ a∈ c

}

Here,a[k/z] means augmenting the assignmenta so that it mapsz to k, anda|X is the func-
tional restriction ofa to the setX.

It is important that this definition preserves failure. If a propagator returns a failed do-
maind that mapsz to the empty set, thenϕ−(d) is the empty set, too (recall that this is really
ϕ−(con(d)), and con(d) = /0 if d(z) = /0).

4.4 Type Conversion

A type conversion view lets propagators for one type of variable work with a different type,
by translating the underlying representation. Our model already accommodates for this, as
a viewϕx maps elements between different setsV andV ′.

Integer views. Boolean variables are essentially integer variables restricted to the values
{0,1}. Constraint programming systems may choose a more efficient implementation for
Boolean variables and hence the types for integer and Boolean variables differ. By wrapping
an efficient Boolean variable in aninteger view, all integer propagators can be directly reused
with Boolean variables. Note that in an implementation based on C++ templates as presented
in Section 6, a wrapper may not even be necessary if Boolean variables simply implement
the same interface as integer variables. Integer views for Boolean variables can save substan-
tial effort. For example, an implementation of theregular-constraint for Boolean variables
can be derived which is actually useful in practice [26].

Care should be taken, however, as dedicated propagators for the Boolean case can often
exploit special techniques. For example, a Boolean disjunction propagated using watched
literals is far more efficient than instantiating a linear constraint∑n

i=1 bi ≥ 1; and the con-
straint∑n

i=1 aibi ≤ c for constant coefficientsai can be implemented efficiently by sorting
the terms according to theai .

Singleton set views.A singleton set viewon an integer variablex, defined asϕx(v) = {v},
presents an integer variable as a set variable. Many constraints involve both integer and set
variables, and some of them can be expressed with singleton set views. A simple constraint
is x∈ y, wherex is an integer variable andy a set variable. Singleton set views derive it as
{x} ⊆ y. This extends to{x}⋄y for all other set relations⋄.

Singleton set views can also be used to derive pure integer constraints from set prop-
agators. For example, the constraintsame(x1, . . . ,xn,y1, . . . ,ym) with integer variablesxi ,yi
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Variable type Implemented Derived Ratio

Integer 93 377 4.05
Boolean 30 93 3.10
Set 31 146 4.71
Overall 154 616 4.00

Table 1 Number of implemented vs. derived propagators

states that the variablesxi take the same values as the variablesyi . With singleton set views,⋃n
i=1{xi} =

⋃m
j=1{y j} implements this constraint (albeit with weaker propagation than the

algorithm presented in [4]).

Set bounds and complete set domain variables.Most systems approximate set variable
domains as set intervals defined by lower and upper bounds [32,18]. However, [22] intro-
duces a representation for the complete domains of set variables, using ROBDDs. Type
conversion views can translate between set interval and ROBDD-based implementations.
We can derive a propagator on ROBDD-based variables from a set interval propagator, and
thus reuse set interval propagators for which no efficient ROBDD representation exists.

4.5 Applicability and Return on Investment

To get an overview of how applicable the presented techniques for propagator derivation
are, let us consider the use of views in Gecode (version 3.7.2).Table 1shows the number
of propagator implementations and the number of propagators derived from the implemen-
tations. On average, every propagator implementation results in four derived propagators.
Propagator implementations in Gecode account for almost 40000 lines of code and 21000
lines of documentation. As a rough estimate, deriving propagators using views thus saves
around 120000 lines of code and 60000 lines documentation to be written, tested, and main-
tained. On the other hand, the views mentioned in this section are implemented in less than
8000 lines of code, yielding a 1500% return on investment.

5 Related Work

The techniques presented in this paper are based on previous research and folklore ideas
that have been known in the constraint programming community for a long time. Reusing
functionality (like a propagator) by wrapping it in an adaptor (like a view) is of course a
much more general technique – think of higher-order functions likefold or mapin functional
programming languages; or chaining command-line tools in Unix operating systems using
pipes.

This section discusses related approaches in the constraint programming context, as well
as systems that have used or extended the concept of views as presented here.

5.1 Indexicals and IBM ILOG Expressions

Views are closely related to both indexicals [5,43] and IBM ILOG CP Optimizer expres-
sions [24]. Indexicals are read-only orunidirectionalbut more expressive than views, Solver
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expressions arebidirectional but give no guarantees about the result of update operations.
Views are bidirectional but limited in expressivity, as discussed below.

An indexical is a propagator that prunes a single variable and is defined in terms of range
expressions. In contrast to views, range expressions can involve multiple variables, but on
the other hand only operate in one direction. For instance, in an indexical for the constraint
Jx= y+zK, the range expressiony+z would be used to prune the domain ofx, but not for
pruning the domains ofy or z.

TheIlcIntExp base class in IBM ILOG CP Optimizer (which has been around since
early versions of ILOG Solver) is an extension of the indexical concept, where also domain
update operations are supported. Expressions can therefore be used to implement derived
propagators. However, no guarantees are given as to whether an update operation on a com-
plex expression actually results in domain updates of the variables the expression consists
of. The CP Optimizer documentation explicitly recommends decomposing expressions us-
ing intermediate variables in order to get the necessary guarantees. Views as presented in
this paper follow an opposite approach. They extend indexicals with update operations but
arelimited in expressivity, just enough to get the strong correctness and completeness guar-
antees of derived propagators presented inSection 3.

5.2 SAT Literals

Unit propagation in SAT solvers performs propagation for Boolean clauses, which are dis-
junctions ofliterals, which in turn are positive or negated Boolean variables. In implemen-
tations such as MiniSat [12], the Boolean clause propagator is in fact derived from a simple
n-ary disjunction propagator andliteral viewsof the variables that perform negation for the
negative literals.

5.3 Constraint Composition

Instead of regarding a viewϕ astransforminga constraintc, one can regardϕ asadditional
constraints, implementing the decomposition. Assuming vars(c) = x1, . . . ,xn, we use addi-
tional variablesx′1, . . . ,x

′
n. Instead ofc, we usec′ = c[x1/x′1, . . . ,xn/x′n], which is the same

relation asc, but onx′1, . . . ,x
′
n. Finally, n view constraints cϕ,i link the original variables to

the new variables, eachcϕ,i being equivalent to the relationx′i = ϕi(xi). The solutions of the
decomposition model, restricted to thex1, . . . ,xn, are exactly the solutions of the original
view-based model.

Every view constraintcϕ,i shares exactly one variable withc and no variable with any
othercϕ,i . Thus, the constraint graph is Berge-acyclic [3], and a fixed point can be com-
puted by first propagating all thecϕ,i , then propagatingc[x1/x′1, . . . ,xn/x′n], and then again
propagating thecϕ,i . This is exactly whatϕ− ◦ p◦ϕ does. Constraint solvers typically do
not provide any means of specifying the propagator scheduling in such a fine-grained way
(Lagerkvist and Schulte show how to use propagator groups to achieve this [27]). Thus, de-
riving propagators using views is also a technique for specifying perfect propagator schedul-
ing.

On a more historical level, a derived propagator is related to the notion ofpath con-
sistency. A domain is path-consistent for a set of constraints, if for any subset{x,y,z} of
its variables,v1 ∈ d(x) andv2 ∈ d(y) implies that there is a valuev3 ∈ d(z) such that the
pair (v1,v2) satisfies all the (binary) constraints betweenx andy, the pair(v1,v3) satisfies
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all the (binary) constraints betweenx andz, and the pair(v3,v2) satisfies all the (binary)
constraints betweenz andy [28]. If ϕ̂(p) is domain-complete forϕ−(c), then it achieves
path consistency for the constraintc[x1/x′1, . . . ,xn/x′n] and all thecϕ,i in the decomposition
model.

5.4 Views in Other Systems

Several systems have adopted techniques for deriving propagators using views as presented
in this paper. The following three explicitly reference our previous work as a basis for their
implementations.

MINION [16] uses views much in the same way as Gecode, to derive propagators from
generic implementations.

Lazy Clause Generation[13] is a combination of propagation-based finite-domain con-
straint solving and SAT-style clause learning. Views have proven essential for an efficient
implementation, as they greatly reduce the number of Boolean literals generated, which
saves memory, makes learned clauses more effective, and helps the VSIDS search heuristic.

CaSPER[9,8] extends views as introduced here to include non-injective multi-variable
views. This makes it possible to map entire arithmetic and Boolean expressions in the model
to expressions of views and simple propagators. Non-injective views induce weaker guaran-
tees for the derived propagators (as will be discussed inSection 7). Derived propagators in
CaSPER are therefore restricted to bounds propagation.

6 Implementation

This section presents an implementation architecture for views and derived propagators,
based on making propagatorsparametric. Deriving a propagator then meansinstantiating
a parametric propagator with views. The presented architecture is an orthogonal layer of
abstraction on top of any solver implementation.

6.1 Views

The model introduced views as functions that transform the input and output of a propagator,
which maps domains to domains. In an object-oriented implementation of this model, a
propagator is no longer a function, but an object with apropagate method thataccesses
and modifiesa domain through the methods of variable objects. Such an object-oriented
model is used for example by ILOG Solver [33] and Choco [25], and is the basis of most of
the current propagation-based constraint solvers.

In the following examples, we use C++ templates to achieve propagator parametricity.
Section 6.3will discuss an alternative implementation based on dynamicbinding.

Figure 2shows C++ classes for a simple integer variable (just representing bounds in-
formation) and corresponding minus and constant integer views. The views have the same
interface as the variable, so that they can be used in its place. A minus view contains a
pointer to the underlying integer variable anddelegatesall the operations, performing the
necessary transformations. A constant view simply returns the constant for domain access
operations, and ignores update operations. For the sake of brevity, the sample code does not
handle failure (when domains are emptied).
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class IntVar {
private: int _min, _max;
public: int min(void) { return _min; }

int max(void) { return _max; }
void adjmin(int n) { if (n > _min) _min = n; }
void adjmax(int n) { if (n < _max) _max = n; }
void subscribe(EventSet e) { /* perform subscription */ }

};

class MinusView {
protected: IntVar* x;
public: MinusView(IntVar* x0) : x(x0) {}

int min(void) { return -x->max(); }
int max(void) { return -x->min(); }
void adjmin(int n) { x->adjmax(-n); }
void adjmax(int n) { x->adjmin(-n); }
void subscribe(EventSet e) { x->subscribe(negate(e)); }

};

class ConstIntView {
protected: int c;
public: ConstIntView(int c0) : c(c0) {}

int min(void) { return c; }
int max(void) { return c; }
void adjmin(int n) { }
void adjmax(int n) { }
void subscribe(Event e) { }

};

Fig. 2 Integer variable, minus and constant views

Events. Most constraint solvers schedule the execution of propagators according toevents
(for an overview see [38]). For example, a propagatorp for Jx < yK can only prune the
domain (and thus should only be executed) if either the lower bound ofx or the upper
bound ofy changes, writtenlbc(x) andubc(y). We say thatp subscribesto theevent set
{lbc(x),ubc(y)}, implemented as thesubscribe method inFigure 2.

Now assume thatp′ is derived fromp using minus views onx andy, thus implementing
x > y. Obviously,p′ should subscribe to the dual event set,{ubc(x), lbc(y)}. In the imple-
mentation, minus views first negate the event set before delegating the subscription to the
underlying variable.

For some views, events likeubc or lbc may not map to corresponding bounds events on
the view. For instance, when using a permutation view that mapsi to π(i) for an arbitrary
permutationπ, an upper bound event on the variable may not correspond to a bound change
on the view and vice versa. In this case, thesubscribe method of the view must map any
event to thedmc event, signaling an arbitrary domain change. In a system that permits views
like this, propagators must be able to deal with spurious events, as they may be scheduled
even if the event they are actually interested in (such asubc) may not have happened.

6.2 Deriving Propagators

In order to derive a propagator using view objects like the above, we useparametricity, a
mechanism provided by the implementation language that supports the instantiation of the
same code (the propagator) with different parameters (the views).
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template<class VX, class VY>
class LessThan : public Propagator {
protected: VX* x; VY* y;
public: LessThan(VX* x0, VY* y0) : x(x0), y(y0) {

x->subscribe(LOWER_BOUND); y->subscribe(UPPER_BOUND);
}
virtual void propagate(void) {

x->adjmax(y->max()-1); y->adjmin(x->min()+1);
}

};

Fig. 3 Parametric less-than propagator

Figure 3shows a simple less-than propagator. The propagator is basedon C++ templates,
it is parametricover the types of the two views it uses and can beinstantiatedwith any
view that provides the necessary operations. This type of parametricity is calledparametric
polymorphism, and is available in other programming languages for example in the form of
Java generics [20] or Standard ML functors [29].

Given two pointers to integer variablesx andy, the propagator can be instantiated to
implementJx< yK as follows (using theIntVar class fromFigure 2):

new LessThan<IntVar,IntVar>(x,y);

The following instantiation yields a propagator forJx> yK:

new LessThan<MinusView,MinusView>(new MinusView(x),new MinusView(y));

6.3 Parametricity

Independent of the concrete implementation, views form an orthogonal layer of abstraction
on top of any propagation-based constraint solver. As long as the implementation language
provides some kind of parametricity, and variable domains are accessed through some form
of variable objects, propagators can be derived using views.

In addition to parametric polymorphism, two other forms of parametricity exist,func-
tional parametricity anddynamic binding. Functional parametricity means that in languages
such as Standard ML [29] or Haskell [31], a higher-order function is parametric over its argu-
ments. Dynamic binding is typically coupled with inheritance in object-oriented languages
(virtual function calls in C++, method calls in Java). Even in languages that lack direct sup-
port for parametricity, parametric behavior can often be achieved using other mechanisms,
such as macros or function pointers in C.

Choice of parametricity. In C++, parametric polymorphism and dynamic binding have ad-
vantages and disadvantages as it comes to deriving propagators.

Templates are compiled bymonomorphization:the code is replicated and specialized
for each instance. The compiler can generate optimized code for each instance, for example
by inlining the transformations that a view implements.

Achieving high efficiency in C++ with templates sacrifices some expressiveness. Instan-
tiation canonly happen at compile-time. Hence, either C++ must be used for modeling, or all
potentially required propagator variants must be instantiated explicitly. Thechoicewhich
propagator to use can however be made at runtime: for linear equations, for instance, if all
coefficients are units, the optimized original propagator can be posted.
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Forn-ary constraints, compile-time instantiation can be a limitation, as all arrays must be
monomorphic (contain only a single kind of view). For example, one cannot mix scale and
minus views in linear constraints. For some propagators, we can work around this restriction
using more than a single array of views. For example, a propagator for a linear constraint
can employ two arrays of different view types, one of which may then be instantiated with
identity views and the other with minus views. While this poses a limitation in principle, our
experience from Gecode suggests that there are only few propagators in practice that suffer
from this limitation.

Dynamic binding is more flexible than parametric polymorphism, as instantiation hap-
pens at runtime and arrays can be polymorphic. Views with virtual methods can therefore be
used at the modeling level, and new views can be introduced and used with existing propa-
gators without recompilation. Several systems that implement views or related approaches
(for instance IBM ILOG CP Optimizer [24] or CaSPER [8]) make use of dynamic binding
in order to take advantage of this added flexibility.

The flexibility of dynamic binding comes at the cost of reduced efficiency, for two rea-
sons. First, dynamic binding is usually implemented usingvirtual tables, where methods
are invoked indirectly, requiring a table lookup at runtime. Second, and more importantly,
the indirection through a virtual table makes certain compiler optimizations impossible. For
instance, the transformations done by view operations typically cannot be inlined and op-
timized. For a detailed discussion of the performance impact of dynamic binding, see [10]
and [23]. Section 8evaluates empirically how these virtual method calls affectperformance.

A system with views based on C++ templates does not rule out dynamic binding. Prop-
agators can be instantiated with all the views known to be useful at compile time, and,
additionally, as a version with views based on virtual methods.

Compile-time versus runtime constants.Some views involve a parameter, such as the
coefficient of a scale view or the constant of a constant view. Depending on how these views
are used, the parameters may be known at compile time, or they may be part of the instance
data of the constraint model.

For example, when deriving Boolean disjunctionx∨y from x∨y↔ zand a constant 1 for
z, we can take advantage of the constant being known at compile-time, and the compiler can
apply more aggressive optimizations. Other examples are a minus view that can be regarded
as a compile-time specialization of a scale view with coefficient−1, and a zero view which
specializes a constant integer view.

Conversely, using runtime parameters the programmer regains some flexibility; for ex-
ample, anaffine viewϕx(v) = av+o with integer parametersa ando can express any com-
bination of offset, scale, minus, and constant views, and therefore (monomorphic) arrays of
affine views express a limited form of array polymorphism. These types of views will be
used for propagators where the parameters are part of the instance data of the model (as will
often be the case with array coefficients, for instance).

6.4 Iterators

Typical domain operations involve a single integer value, for instance adjusting the mini-
mum or maximum of an integer variable. These operations are not efficient if a propagator
performs full domain reasoning on integer variables or deals with set variables. Therefore,
set-valued operations, like updating a whole integer variable domain to a new set, or ex-
cluding a set of elements from a set variable domain, are important for efficiency. Many
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constraint programming systems provide an abstract set-datatype for accessing and updat-
ing variable domains, as for example in Choco [6], ECLiPSe [11], SICStus Prolog [42], and
Mozart [30]. IBM ILOG CP Optimizer [24] only allows access by iterating over the values
of a variable domain.

This section developsiteratorsas one particular abstract datatype for set-valued opera-
tions on variables and views. There are two main reasons to discuss iterators in this paper.
First, iterators provide simple, expressive, and efficient set-valued operations on variables.
Second, and more importantly, iterators transparently perform the transformations needed
for set-valued operations on views, and thus constitute a perfect fit for deriving propagators.

Range sequences and range iterators.We define arange [m .. n] to denote the set of
integers{l ∈ Z | m≤ l ≤ n}. A range sequenceranges(S) for a finite set of integersS⊆ Z

is the shortest sequences= 〈[m1 .. n1] , . . . , [mk .. nk]〉 such thatS=
⋃k

i=1 [mi .. ni ] and the
ranges are ordered by their smallest elements (mi ≤ mi+1 for 1≤ i < k). We thus define the
set covered by a range sequence as set(s) =

⋃k
i=1 [mi .. ni ]. The above range sequence is also

written as〈[mi .. ni ]〉
k
i=1. Clearly, the range sequence of a set is unique, none of its ranges is

empty, andni +1< mi+1 for 1≤ i < k.
A range iteratorfor a range sequences= 〈[ni .. mi ]〉

k
i=1 is an object that provides itera-

tion overs: each of the[mi .. ni ] can be obtained in sequential order but only one at a time.
A range iteratorr provides the following operations:r .done() tests whether all ranges have
been iterated,r .next() moves to the next range, andr .min() andr .max() return the mini-
mum and maximum value for the current range. By set(r) we refer to the set defined by an
iteratorr (which must coincide with set(s)).

A range iterator naturally hides its implementation. It can iterate a sequence (for instance
an array) directly by position, but it can just as well traverse a linked list or the leaves of a
balanced tree, or for example iterate over the union of two other iterators.

Iterators are consumed by iteration. Hence, if the same sequence needs to be iterated
twice, a fresh iterator is needed. If iteration is cheap, an iterator can support multiple iter-
ations by providing a reset operation. Otherwise, acache iteratortakes an arbitrary range
iterator as input, iterates it completely, and stores the obtained ranges in an array. Its opera-
tions then use the array. The cache iterator implements a reset operation, so that the possibly
costly input iterator is used only once, while the cache iterator can be used as often as
needed.

Iterators for variables. The two basic set-valued operations on integer variables are do-
main access and domain update. For an integer variablex, the operationx.getdom() returns
a range iterator for ranges(d(x)). The operationx.setdom(r) updates the variable domain
of x to set(r) given a range iteratorr , provided that set(r) ⊆ d(x). The responsibility for
ensuring that set(r)⊆ d(x) is left to the programmer.

In order to provide safer and richer operations, we can useiterator combinators. For
example, anintersection iterator r= iinter(r1, r2) combines two range iteratorsr1 and r2

such that set(r) = set(r1)∩set(r2). Similarly, adifference iterator r= iminus(r1, r2) yields
set(r) = set(r1)\set(r2).

Richer set-valued operations are then effortless. The operationx.adjdom(r) adjusts the
domaind(x) by set(r), yielding d(x)∩ set(r), whereasx.excdom(r) excludes set(r) from
d(x), yieldingd(x)\set(r):

x.adjdom(r) = x.setdom(iinter(x.getdom(), r))

x.excdom(r) = x.setdom(iminus(x.getdom(), r))



22 Christian Schulte, Guido Tack

In contrast to thex.setdom(·) operation, the richer set-valued operations are inherently
contracting, and thus safer to use when implementing a propagator.

Iterators also serve as the natural interface for operations on set variables, which are
usually approximated as set intervals defined by a lower and an upper bound [32,18]:

d(x)= [glb(d(x)) .. lub(d(x))] = {s | glb(d(x))⊆ s,s⊆ lub(d(x))}

In order to access and update these set bounds, propagators use set-valued operations
based on iterators:x.glb() returns a range iterator for ranges(glb(d(x))), x.lub() returns
a range iterator for ranges(lub(d(x))), x.adjglb(r) updates the domain ofx to [glb(d(x))∪
set(r), lub(d(x))], andx.adjlub(r) updates the domain ofx to [glb(d(x)), lub(d(x))∩set(r)].

Iterator combinators provide the operations that set propagators need: union, intersec-
tion, difference, and complement. Many propagators can thus be implemented directly using
iterators and do not require any temporary data structures for storing set-valued intermediate
results.

All set-valued operations are parametric with respect to the iteratorr : any range iterator
can be used. As for parametric propagators, an implementor has to decide on the kind of
parametricity to use. Gecode uses template-based parametric polymorphism, with the per-
formance benefits due to monomorphization and consequent code optimization mentioned
previously.

Advantages. Range iterators provide essential advantages over an explicit set representa-
tion. First, any range iterator regardless of its implementation can be used in domain oper-
ations. This turns out to result in simple, efficient, and expressive domain updates. Second,
no costly memory management is required to maintain a range iterator as it provides access
to only one range at a time. Third, the abstractness of range iterators makes them compatible
with views and derived propagators: the necessary view transformations can be encapsulated
in an iterator, as discussed below.

Iterators for views. As iterators hide their implementation, they are perfectly suited for
implementing the transformations required for set-valued operations on views.

Set-valued operations for constant integer views are straightforward. For a constant view
v on constantk, the operationv.getdom() returns an iterator for the singleton range se-
quence〈[k .. k]〉. The operationv.setdom(r) just checks whether the range sequence ofr is
empty (in order to detect failure).

Set-valued operations for an offset view are provided by anoffset iterator. For a range
sequencer = 〈[mi .. ni ]〉

k
i=1 and offsetc, ioffset(r,c) iterates〈[mi +c .. ni +c]〉k

i=1. An offset
view onx with offsetc then implementsgetdom as ioffset(x.getdom(),c)andsetdom(r)
asx.setdom(ioffset(r,−c)).

For minus views we just give the range sequence, iteration is obvious. For a given
range sequence〈[mi .. ni ]〉

k
i=1, the negative sequence is obtained by reversal and sign change

as 〈[−nk−i+1 .. −mk−i+1]〉
k
i=1. The same iterator for this sequence can be used both for

setdom and getdom operations. Note that implementing the iterator is involved as it
changes direction of the range sequence. There are two different options for changing direc-
tion: either the set-valued operations accept iterators in both directions or a cache iterator is
used to reverse the direction. Gecode uses the latter andSection 8.2evaluates the overhead
introduced by cache iterators.

A scale iterator provides the necessary transformations for scale views. Assume a scale
view on a variablex with a coefficienta > 0, and let〈[mi .. ni ]〉

k
i=1 be a range sequence
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for d(x). If a = 1, the scale iterator does not change the range sequence. Otherwise, the
corresponding scaled range sequence is〈{a×m1},{a× (m1 +1)}, . . . ,{a× n1}, . . . ,{a×
mk}, {a× (mk +1)}, . . . ,{a×nk}〉. For the other direction, assume we want to update the
domain using a setS through a scale view. Assume that〈[mi .. ni ]〉

k
i=1 is a range sequence

for S. Then for 1≤ i ≤ k the ranges[⌈mi/a⌉ .. ⌊ni/a⌋] correspond to the required variable
domain forx, however they do not necessarily form a range sequence as the ranges might be
empty, overlapping, or adjacent. Iterating the range sequence is however simple by skipping
empty ranges and merging overlapping or adjacent ranges. Scale views for a variablex and a
coefficienta in Gecode are restricted to be strictly positive so as to not change the direction
of the scaled range sequence. A negative coefficient can be obtained by using a scale view
together with a minus view.

A complement view of a set variablex uses acomplement iterator, which given a range
iteratorr iterates overset(r).

7 Limitations

Although views are widely applicable, they are no silver bullet. This section explores some
limitations of the presented model.

Beyond injective views. Views are required to be injective, as otherwiseϕ−◦ϕ is no longer
the identity function, and derived propagators would not necessarily be contracting. An ex-
ample for this behavior is a view for the absolute value of an integer variable. Assuming
a variable domaind(x) = {1}, an absolute value viewϕ would leave the domain as it is,
ϕ(d)(x) = {1}, but the inverse would “invent” the negative value,ϕ−(ϕ(d))(x) = {−1,1}.
With an adapted definition of derived propagators, such asϕ̂(p)(d) = ϕ−(p(ϕ(d)))∩ d,
non-injective views could be used – however, many of the proofs in this paper rely on injec-
tivity. Correia [8] shows that some theorems hold for non-injective views, for instance when
propagators are restricted to bounds reasoning.

Multi-variable views. Some multi-variable views that seem interesting for practical ap-
plications do not preserve contraction, for instance a view on the sum or product of two
variables. The reason is that removing a value through the view would have to result in
removing atupleof values from the domain. As domains can only represent Cartesian prod-
ucts, this is not possible in general. Such a view would have two main disadvantages. First,
if propagation of the original constraint is strong but does not lead to an actual domain prun-
ing through the views, then the potentially high computational cost for the pruning does
not pay off. A cheaper but weaker, dedicated propagation algorithm or a different modeling
with stronger pruning is then a better choice. Second, if views do not preserve contrac-
tion, thenProposition 5does not hold. That means that a propagatorp cannot easily detect
subsumption any longer, as it would have to detect it forϕ̂(p) instead of just for itself,p.
Systems such as Gecode that disable subsumed propagators (as described in [40]) then lose
this potential for optimization.

For contraction-preserving views on multiple variables, all the theorems still hold. Two
such views we could identify are a set view of Boolean variables[b1, . . . ,bn], behaving like
{i | bi = 1}; and an integer view of Boolean variables[b1, . . . ,bn], wherebi is 1 if and only
if the integer has valuei; as well as the inverse views of these two.
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Benchmark time (ms) mem. (KByte) failures propagations

All-Interval (50) 77.74 261 0 6685
All-Interval (100) 1703.14 837 0 25866
Alpha (naive) 33.74 45 7435 136179
BIBD (7-3-60) 420.91 7414 1306 914321
Eq-20 0.47 27 54 3460
Golomb Rulers (Bnd, 10) 170.21 125 8890 944651
Golomb Rulers (Dom, 10) 198.61 837 8890 936096
Graph Coloring 97.44 6730 1100 125639
Magic Sequence (500) 79.01 8773 251 84086
Magic Sequence (GCC, 500) 105.84 612 251 3460
Partition (32) 564.87 282 42534 2253419
Perfect Square 49.83 6215 150 291056
Queens (10) 14.98 29 4992 43448
Queens (Dom, 10) 34.55 101 3940 59508
Queens (100) 0.70 356 22 455
Queens (Dom,100) 12.67 2572 8 693
Sorting (400) 507.59 268510 0 459501
Social Golfers (8-4-9) 71.03 14423 32 181290
Social Golfers (5-3-7) 431.97 3785 1174 836201
Hamming Codes (20-3-32) 392.34 35273 2296 753751
Steiner Triples (9) 39.56 1768 1067 297501
Sudoku (Set, 1) 1.53 116 0 1779
Sudoku (Set, 4) 2.91 181 1 3180
Sudoku (Set, 5) 12.05 323 11 12875

Table 2 Results for the system with views (vanilla Gecode 3.7.2)

Propagator invariants. Propagators typically rely on certain invariants of a variable do-
main implementation. If idempotency or completeness of a propagator depend on these
invariants, type conversion views lead to problems, as the actual variable implementation
behind the view may not respect the same invariants.

For example, a propagator for set variables based on the set interval approximation can
assume that adjusting the lower bound of a variable does not affect its upper bound. If this
propagator is instantiated with a type conversion view for an ROBDD-based set variable (see
Section 4.4), this invariant is violated: if, for instance, the current domain is{{1,2},{3}},
and 1 is added to the lower bound, then 3 is removed from the upper bound (in addition to 2
being added to the lower bound). If a propagator reports that it has computed a fixed point
based on the assumption that the upper bound cannot have changed, it may actually not be at
a fixed point. This potentially results in incorrect propagation, for instance if the propagator
could detect failure if it were run again.

8 Evaluation

While Section 3proved that derived propagators are perfect with respect to the mathematical
model, this section shows that in most cases one can also obtain perfect implementations
of derived propagators, not incurring any performance penalties compared to dedicated,
handwritten propagators.

Experimental setup. The experiments are based on Gecode 3.7.2 [14]. All examples were
compiled using the GNU C++ compiler gcc 4.4.3, all with the same compiler options (gener-
ating 64 bit code with full optimization-O3). The experiments were done on an 8-core Intel
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Benchmark time % mem. % propagations %

Alpha (naive) 383.21 366.67 673.11
BIBD (7-3-60) 337.74 239.83 268.33
Eq-20 584.80 366.67 704.57
Partition (32) 172.35 179.08 227.77
Perfect Square 113.88 114.42 104.65
Queens (Dom, 10) 163.51 195.05 519.68
Queens (Dom,100) 124.29 102.49 2371.86
Social Golfers (8-4-9) 230.73 243.77 160.22
Social Golfers (5-3-7) 173.60 159.18 151.89
Hamming Codes (20-3-32) 112.12 105.26 99.65
Steiner Triples (9) 124.62 101.81 101.76
Sudoku (Set, 1) 142.30 113.79 110.62
Sudoku (Set, 4) 133.16 126.52 107.55
Sudoku (Set, 5) 132.44 109.91 110.55

Table 3 Relative performance of decomposition, compared to views

Core i7 at 2.7 GHz running 64 bit Linux. During the experiments, only one example was
run at a time, with no other processes except for the usual Linux background processes run-
ning, in order to minimize the influence of process scheduling on the results. Runtimes are
the average of 20 runs, with a coefficient of deviation less than 2% for all benchmarks. All
example programs are available in the Gecode distribution.Table 2shows the figures for the
unmodified Gecode 3.7.2 (pure integer models above, models with integer and set variables
below the horizontal line). This version makes full use of views as presented in this paper,
and the results of further experiments will be given relative to these numbers. For example,
a runtime of 130% means that the example needs 30% more time, while 50% means that it
is twice as fast as in vanilla Gecode 3.7.2. The columntime shows the runtime,mem.the
peak allocated memory,failures the number of failures during search, andpropagationsthe
number of propagator invocations.

As many of the experimental results rely on the optimization capabilities of the used
C++ compiler, we verified that all experiments yield similar results with the Microsoft Visual
Studio 2008 C++ compiler.

8.1 Views Versus Decomposition

In order to evaluate whether deriving propagators is worth the effort in the first place, this
set of experiments compares derived propagators with their decompositions, revealing a
significant overhead of the latter.

Table 3shows the results of these experiments. ForAlpha andEq-20, linear equations
with coefficients are decomposed. ForQueens 100, we replace the specialall-different-with-
offsets by its decomposition into anall-differentpropagator and binary equality-with-offset
propagators. InBIBD andPerfect Square, we decompose ternary Boolean propagators, im-
plementingx∧ y↔ z as¬x∨¬y↔¬z in BIBD, andx∨ y↔ z as¬x∧¬y↔¬z in Perfect
Square. In the remaining examples, we decompose a set intersection into complement and
union propagators.

Some integer examples show a significant overhead of up to six times the runtime and
memory when decomposed. The overhead of most set examples as well asPerfect Square
is moderate, partly because no additional variable was introduced if the model already con-
tained its complement or negation. As to be expected, decomposition often needs signifi-
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Benchmark time % prop. %

All-Interval (50) 99.93 100.00
All-Interval (100) 100.18 100.00
Alpha (naive) 98.55 100.00
Golomb Rulers (Bnd, 10) 99.81 99.99
Golomb Rulers (Dom, 10) 94.34 100.00
Graph Coloring 100.56 100.00

Benchmark time % prop. %

Partition (32) 107.42 108.66
Queens (10) 100.18 100.00
Queens (Dom, 10) 101.57 100.00
Queens (100) 97.09 100.00
Queens (Dom,100) 97.22 100.00
Sorting (400) 103.62 100.00

Table 4 Relative performance of minus views

cantly more propagation steps, but as the additional steps are performed by cheap propaga-
tors (likex = y+ i or x = ¬y), the runtime effect is less drastic.Queens 100is an extreme
case, where 23 times the propagation steps only cause 24% more runtime. The reason is
that the scheduling order does not take advantage of the fact that the decompositions are
Berge-acyclic as discussed inSection 5.

8.2 Impact of Derivation Techniques

The techniques presented inSection 4have different impacts on the performance of the
derived propagators.

Generalization and specialization.These techniques can be implemented without any per-
formance overhead compared to a handwritten propagator. This is not surprising as the only
potential overhead could be that a function call is not resolved at compile time. For exam-
ple, a thorough inspection of the code generated by the GNU C++ compiler and the Microsoft
Visual Studio C++ compiler shows that they are able to fully inline the operations of offset
and scale views.

Transformation and type conversion. These techniques can incur an overhead compared
to a dedicated implementation, as the transformations performed by the views can some-
times not be removed by compiler optimizations, and type conversions may be costly if the
data structures for the variable domains differ significantly.

For example, a propagator instantiated with two minus views of variablesx andy may
include a comparison,(−x)< (−y). Due to the invariants guaranteed by views, this is equiv-
alent toy< x, saving two negations. However, the asymmetry in the two’s complement rep-
resentation of integers prevents the compiler from performing this optimization. As an ex-
periment to evaluate this effect, we instantiated anall-differentpropagator with minus views.
The resulting derived propagator of course implements the same constraint, but incurs the
overhead of negation. Similarly, we replaced the max propagator in theSortexample with a
min (where the propagator for min is derived from the propagator for max) and negated all
parameters. According to the results inTable 4, the overhead is mostly negligible.

It is interesting to note that the domain-completeall-differentpropagator, when instan-
tiated with minus views, requires a cache iterator for sequence reversal (as discussed in
Section 6.4). Surprisingly, the overhead of minus views is largely independent of the use of
cache iterators which is confirmed inSection 8.4.

Other transformations are translated optimally, such as turning(−x)− (−y) into y−x.
Boolean negation views also lead to optimal code, as they do not compute 1−x for a Boolean
variablex, but instead swap the positive and negative operations.
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Benchmark time % prop. %

Social Golfers (8-4-9) 148.45 100.00
Social Golfers (5-3-7) 130.30 100.60
Hamming Codes (20-3-32) 119.98 100.00
Steiner Triples (9) 120.83 100.00

Benchmark time % prop. %

Sudoku (Set, 1) 141.83 110.62
Sudoku (Set, 4) 133.15 107.55
Sudoku (Set, 5) 133.31 110.55

Table 5 Relative performance of views compared to dedicated set propagators

Benchmark time %

All-Interval (50) 111.14
All-Interval (100) 107.09
Alpha (naive) 141.05
BIBD (7-3-60) 140.48
Eq-20 217.96
Golomb Rulers (Bnd, 10) 163.43
Golomb Rulers (Dom, 10) 146.19
Graph Coloring 105.32
Magic Sequence (500) 133.72
Magic Sequence (GCC, 500) 147.63
Partition (32) 151.28
Perfect Square 119.07
Queens (10) 110.52
Queens (100) 116.39

Benchmark time %

Social Golfers (8-4-9) 125.56
Social Golfers (5-3-7) 119.52
Hamming Codes (20-3-32) 120.20
Steiner Triples (9) 132.25
Sudoku (Set, 1) 109.39
Sudoku (Set, 4) 110.57
Sudoku (Set, 5) 109.64

Table 6 Relative performance of virtual method calls

Set-valued transformations can result in non-optimal code. For example, a propagator
for ternary intersection,x= y∩z, will include an inferencex.adjglb(y.glb()∩z.glb()).
To derive a propagator forx= y∪z, we instantiate the intersection propagator with comple-
ment views forx, y, andz, yielding the following inference:

x.adjglb(y.glb()∩z.glb())

which amounts to computing

x.adjlub(y.lub()∩z.lub())

It would be more efficient to implement the equivalentx.adjlub(y.lub()∪ z.lub()) be-
cause this requires three set operations less. Unfortunately, no compiler will find this equiv-
alence automatically, as it requires knowledge about the semantics of the set operations.
Table 5compares a dedicated propagator for the constraintx∩ y = z with a version using
complement views and a propagator forx∪ y = z. The overhead of 20% to 48% does not
render views useless for set variables, but it is nevertheless significant.

8.3 Templates Versus Virtual Methods

As suggested inSection 6, in C++, compile-time polymorphism using templates is results in
more efficient code than virtual method calls. The reason is not only that a virtual method
call needs an indirection compared to a normal method call, but also (and more importantly)
that virtual calls cannot be inlined. To evaluate this, we changed the basic operations of
integer variables into virtual methods, such that view operations need one virtual method
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Benchmark time %

All-Interval (50) 102.57
All-Interval (100) 101.84
Golomb Rulers (Bnd, 10) 100.33
Golomb Rulers (Dom, 10) 101.37
Graph Coloring 102.73
Magic Sequence (GCC, 500) 99.60
Queens (Dom, 10) 128.27
Queens (Dom,100) 110.16

Benchmark time %

Social Golfers (8-4-9) 462.24
Social Golfers (5-3-7) 371.74
Hamming Codes (20-3-32) 245.40
Steiner Triples (9) 290.40
Sudoku (Set, 1) 267.92
Sudoku (Set, 4) 261.30
Sudoku (Set, 5) 267.92

Table 7 Relative performance of cache iterators

call. This is not possible for iterator-based operations, as template methods cannot be vir-
tual in C++. In order to obtain a conservative approximation of virtual template methods, we
prevented the inlining of iterator-based variable operations, so that the compiler at least has
to generate normal function calls. Note that this only affects iterator-based variable oper-
ations and we still compile with full optimization including inlining. The results of these
experiments appear inTable 6. Virtual method calls and non-inlined iterator-based opera-
tions cause a runtime overhead between 5% and 117% for the integer examples (left table),
and 9% to 32% for the set examples (right table). The runtime overhead for set examples
is lower as the basic operations on set variables are considerably more expensive than the
basic operations on integer variables.

8.4 Iterators Versus Temporary Data Structures

The following experiments show that using range iterators improves the efficiency of prop-
agators, compared to the use of explicit set data structures for temporary results.

For the experiments, temporary data structures have been emulated by wrapping all iter-
ator combinators in a cache iterator as described inSection 6.4. That way, every computation
on iterators (such as the union of two iterators) is first computed, then stored in a cache it-
erator, and then read from the cache. The cache iterator thus serves as a set data structure
for temporary results of set operations.Table 7shows the results. For integer propagators,
computing with temporary data structures incurs very little overhead. Only the Queens ex-
amples, dominated by theall-differentconstraints, show an overhead of more than 10%. For
set propagators, which make much more use of iterator combinators than integer propaga-
tors, the overhead becomes prohibitive, resulting in up to 4.6 times the runtime. The memory
consumption (not shown in the table) does not increase, because iterators are not stored, and
only few iterators are active at a time.

These results heavily depend on how the variable domains and temporary data structures
are represented. The reported overhead therefore possibly does not carry over if, for instance,
bit vectors are used instead of range sequences.

9 Conclusion

Folklore techniques for deriving propagator variants from parametric propagators have been
used by constraint programming system implementors for decades. This paper has consoli-
dated the existing approaches into the concept of usingviewsto derive propagator variants.
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Such variants are ubiquitous, and the paper has shown how tosystematicallyderive propa-
gators using different types of views, corresponding to techniques such as transformation,
generalization, specialization, and type conversion.

Based on a formal, implementation independent model of propagators and views, the pa-
per has identified fundamental properties of views that result inperfectderived propagators.
The paper has shown that a derived propagator inherits correctness and domain complete-
ness from its original propagator, and bounds completeness given additional properties of
the used views.

The paper has presented an implementation architecture for views based onparametric-
ity. The propagator implementation is kept parametric over the type of view that is used, so
that deriving a propagator amounts to instantiating a parametric propagator with the proper
views. This implementation architecture is an orthogonal layer of abstraction that can be
implemented on top of any constraint solver.

An empirical evaluation has shown that views have proven invaluable for the implemen-
tation of Gecode, saving huge amounts of code to be written and maintained. Furthermore,
deriving propagators using C++ templates has been shown to yield competitive (in many
cases optimal) performance compared to dedicated handwritten propagators. The experi-
ments have also clarified that deriving propagators is vastly superior to decomposing the
constraints into additional variables and simple propagators.
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