Views and Iteratorsfor Generic Constraint
| mplementations

Christian Schulttand Guido Tack

1 ICT,KTH - Royal Institute of Technology, Swedesthulte@imit.kth.se
2 PS Lab, Saarland University, Saaibken, Germany,ack@ps .uni-sb.de

Abstract. This paper introduces an architecture for generic constraint imple-
mentations based on variable views and range iterators. Views allowdonie,

to scale, translate, and negate variables. The paper shows how to onskeint
implementations generic and how to reuse a single generic implementation with
different views for different constraints. A wide range of applicatiofsiews
exemplifies their usefulness and their potential for simplifying constraiptdém
mentations. We introduce domain operations compatible with views based on
range iterators. The paper evaluates the applicability of the approachllaasw
different implementation techniques for the presented architecture.

1 Introduction

A challenging aspect in developing and extending a comgtpdogramming system is
implementing &omprehensiveet of constraints. Ideally, a system should provide sim-
ple, expressive, and efficient abstractions that easea@weint and reuse of constraint
implementations.

This paper contributes a new architecture based on vanadies and range itera-
tors. The architecture comprises an additional level ofrab8on to decouple variable
implementations from constraint implementations, theppgators. Propagators com-
pute generically with variable views instead of variables.

A view of a variable presents an adaptor that performs toanmsditions while ac-
cessing the variable it abstracts over. Views support ojpesalike scaling, translation,
and negation of variables. Views also abstract over thenlyidg data structure used
for storing the variable domain. That way, cross-domaimwsiean for example enable
propagators for finite set constraints to operate on finitaalo variables.

This simple layer of abstraction allows one propagator tanseantiated multiple
times, with different views. For example, a simple genermpagator for linear equal-
ity EkIKZ:LXi = c can be used with a scale-view= g; - y; to obtain an implementation
of 3i,a -y = c. Or a negated Boolean view can be used to derive an implementa
tion of Boolean disjunction from a propagator for conjuonti As a final example, a
cross-domain view of a finite domain variable as a single&integether with a subset
propagator, yields a propagator foe s. Variable views thus assist in implementing
propagators on a higher level of abstraction.

Range iterators support powerful and efficient domain djmra on variables and
variable views. The operations can access and modify niltiglues of a variable

domain simultaneously. Range iterators are efficient ag lledp avoiding temporary
data structures. They simplify propagators by serving aptds between variables
and propagator data structures.

The architecture is carefully separated from its impleragon. Two different im-
plementation approaches are presented and evaluated. pdenm@ntation using para-
metric polymorphism (such as templates in) @& shown to not incur any runtime cost.
The architecture can be used for arbitrary constraint progning systems and has been
fully implemented in Gecode [2].

Plan of the paper. The next section presents a model for finite domain constrain
programming systems. Sect. 3 introduces variable viewsexethplifies their use.
Sect. 4 presents Boolean views of finite domain variablesdistlisses pairs of sym-
metric propagators. Sect. 5 introduces iterator-baseddoaperations that are applied
to views in the following section. Variable views for set stmaints are discussed in
Sect. 7. In Sect. 8 implementation approaches for views tandtors are presented,
followed by their evaluation in Sect. 9. The last sectionaodes and discusses future
work.

2 Constraint Programming Systems

This section introduces the model for finite domain constrarogramming systems
considered in this paper and relates it to existing systems.

Variables and propagatorsFinite domain constraint programming systems offer ser-
vices to support constraint propagation and search. Irptpgr we are only concerned
with variables used for constraint propagation. We assuraed constraint is imple-
mented by gropagator A propagator maintains a collection of variables and perfo
constraint propagation by executing operations on therthédrfollowing we consider
finite domain variables and propagators. A finite domainaldex has an associated
domaindom(x) being a subset of some finite subset of the integers.

Propagators do not manipulate variable domains directtyuba operations pro-
vided by the variable. These operations return informagioout the domain or update
the domain. In addition, they handle failure (the domaindoees empty) and control
propagation.

Value operations.A value operatioron a variable involves a single integer as result
or argument. We assume that a variaklevith D = dom(x) provides the following
value operationsx.getmin() returns mirD, X.getmax() returns map, X.adjmin(n)
updates dorfx) to {m e D | m> n}, x.adjmax(n) updates dorfx) to {me D | m< n},
andx.excval(n) updates dorfx) to {me D | m# n}. These operations are typical for
finite domain constraint programming systems like Chocol[8DG Solver [9, 11, 4],
Eclipse [1], Mozart [8], and Sicstus [5]. Some systems ptevadditional operations
such as for assigning values.

Domain operations.A domain operatiorsupports simultaneous access or update of
multiple values of a variable domain. In many systems thigr@vided by supporting
an abstract set-datatype for variable domains, as for ele@m@Ehoco [6], Eclipse [1],
Mozart [8], and Sicstus [5]. ILOG Solver [9, 11, 4] only allewaccess by iterating over
the values of a variable domain.

Range sequencefange notatiofn .. m| is used for the set of integefsc Z | n <1 <
m}. A range sequencrengesl) for a finite integer set C Z is the shortest sequence
s={([ny..m],...,[nk .. my]) such that is covered (s€t) = |, where s€fs) is defined
asUi_41[ni .. m]) and the ranges are ordered by their smallest elements .1 for

1 <i < k). The above range sequence is also writtefas. m]>ik=1. Clearly, a range
sequence is unique, none of its ranges is emptynandl < nj; 1 for 1 <i < k.

3 Variable Viewswith Value Operations

This section introduces variable views with value opereiarhe full design with do-
main operations and a discussion of their properties falowSect. 6.

Example 1 (Smart n-Queeng§onsider the well-known finite domain constraint model
for n-Queens using three alldifferent constraints: each queapresented by a variable
Xi (0 <i < n)with domain{0,...,n—1}. The constraints state that the values okall
the values of alk; —i, and the values of a +i must be pairwise different for@i < n.

If the used constraint programming system lacks versiomadldifferent supporting
that the values of; -+ ¢; are different, the user must resort to using additionakaaes
yi and constrainty; = X; + ¢; and the single constraint that tlyeare different. This
approach is clearly not very efficient: it triples the numbéwariables and requires
additional 21 binary constraints.

Systems with this extension of alldifferent must implemewmb very similar ver-
sions of the same propagator. This is tedious and increaseaniount of code that
requires maintenance. In the following we make propagaeneric the same propa-
gator can be reused for several variants.

To make a propagator generic, all its operations on varsadale replaced by oper-
ations on variable views. &ariable view(view for short) implements the same opera-
tions as a variable. A view stores a reference to a variaieking an operation on the
view executes the appropriate operation on the view’s bbgidMultiple variants of a
propagator can be obtained by instantiating the singlergiepmpagator with multiple
different variable views.

Offset-views.For anoffset-view = voffset(x, c) for a variablex and an integec, per-
forming an operation om results in performing an operation ant c. The operations
on the offset-view are:

= X.getmax()+C

v.getmin() :=X.getmin()+cC Vgetmax(
n— = X.adjmax(n—C)

)
v.adjmin(n) ;= X.adjmin(n—c) v.adjmax(n)
V.excval(n) := X.excval(n—cC)

To obtain both alldifferent propagators required by Exaiplalso andentity-view
is needed. An operation on an identity-view (Wil for a variablex performs the same
operation orx. That is, identity-views turn variables into views to complith propaga-
tors now computing with views. In an implementation langritigat supports subtyping,
variables can themselves be regarded as views, elimindiingeed for identity views.

Obtaining the two variants of alldifferent is straightfaxd: the propagator is made
generic with respect to which view it uses. Using the propagaith both an identity-
view and an offset-view yields the required propagators.

Offset-views can also be used to obtain propagators foctstrequalities from
propagators for the non-strict constraints. For instarcey can be implemented as
x < voffsety, —1).

Sect. 8 discusses how views can be implemented whereasttisrsfocuses on
the architecture only. However, to give some intuition, infGr example, propagators
can be made generic by implementing them as templates watlhighd view as tem-
plate argument. Instantiating the generic propagator #maounts to instantiating the
corresponding template with a particular view.

Views are orthogonal to the propagator. In the above examnoffiet-views can be
used for any implementation of alldifferent using value rgpiens. This includes the
naive version propagating when variables become assignétedounds-consistent
version [10].

Scale-views.In the above example, views allow to reuse the same propafigateari-
ants of a constraint, avoiding duplication of code and éffarthe following, views can
also simplify the implementation of propagators.

Example 2 (Linear inequalitiesh common constraint is linear inequalify! ; a - X <
¢ (equality and disequality is similar) with integeas and c and variabless. In the
following we restrict they; to be positive.

A typical bounds-propagator executes fox 3 < n:

xj.adjmax([(c—1j)/aj]) with 1j=3,; & X.getmin()

Quite often, models feature the special case 1 for 1 <i < n. For this case, itis
sufficient to execute for £ j <n:

Xj.adjmax(c—Ilj) with |j= zin:l_i#jxi.getmin()

As this case is common, a system should optimize it. An ogtichiversion requires
less space (n@; required) and less time (no multiplication, division, amaimding).
But, a more interesting question is: can one just implemesstmple propagator and
get the full version by using views?

With scale-views, the simple implementation can be usecth bases. Ascale-
view v= vscalda, x) for a positive integea > 0 and a variable defines operations for
a-x

v.getmin() :=a-X.getmin() v.getmax() :=a-X.getmax()
v.adjmin(n) :=X.adjmin([n/al) v.adjmax(n) ;= X.adjmax(|n/al)
v.excval(n) := if nmoda= 0then x.excval(n/a)

From the simpler implementation the special case (idewntéws) and the general
case (scale-views) can be obtained. Multiplication, divisand rounding is separated
from actually propagating the inequality constraint. Véelaence support separation of
concerns and can simplify the implementation of propagatarparticular, multiplica-
tion, division, and rounding need to be implemented onlyedfoe the scale-view: any
generic propagator can use scale-views.

Minus-views. Another common optimization is to implement binary and &eyrvari-
ants of commonly used constraints. This optimization redube overhead with respect
to both time and memory as no array is needed.

Example 3 (Binary linear inequalityConsider a propagator fog + v, < ¢ with views

vi andvp propagating as described in Example 2. With scale-views vscaléas, x;)
andvy = vscaléay, xp) the propagator also implemerds - x; + a - X2 < ¢ provided
that a;,a, > 0. However,x; — o < ¢ cannot be obtained with scale-views. Even if
scale-views allowed negative constants, it would be iniefiicto multiply, divide, and
round to just achieve negation.

A minus-view v= vminugx) for a variablex provides operations such thabehaves
as—x. Its operations reflect that the smallest possible valug isthe largest possible
value for—x and vice versa:

V.getmin() := —X.getmax() V.getmax() = —X.getmin()
v.adjmin(n) ;= X.adjmax(—n) v.adjmax(n) ;= X.adjmin(—n)
v.excval(n) := X.excval(—n)

With minus-viewsx; — x2 < ¢ can be obtained from an implementatiornvof- v, <
¢ with v1 = vid(x1) andv, = vminugx). With an offset-view it is actually sufficient
to implementvy + v» < 0. Thenx; + X2 < ¢ can be implemented by an identity-view
vid(x1) for v1 and an offset-view voffsékp, —c) for vo. But again, given just; + v, <0,
an implementation fox; — xo < ¢ with ¢ # 0 cannot be obtained.

Minus-views implement the inverse for finite domain vareshlthus all propagators
that are symmetric with respect to the sign of their argusean take advantage of
minus views. An example for a pair of symmetric propagatardinite domain vari-
ables is minimum and maximum: mgy, ..., X») can be obtained from a the minimum
propagator with mitvminugxy), . ..,vminugX,)). We will come back to inverse views
in the sections about Boolean and set constraints.

Derived views.It is unnecessarily restrictive to define views in terms ofalales. The
actual requirement for a view is that its variable provides same operations. It is
straightforward to make views generic themselves: views lm defined in terms of
other views. The only exception are identity-views as thewwe the very purpose of
casting a variable into a view. Views such as offset, scalé minus are callederived
views they are derived from some other view.

With derived views being defined in terms of views, the firspsto use a derived
view is to turn a variable into a view by an identity-view. Fexample, a minus-
view v for the variablex is obtained from a minus-view and an identity-view=
vminugvid(x)).

Example 4 (Binary linear inequality reconsideretl)sing offset-views, minus-views,
and scale-views, all possible variants of binary lineaguradities can now be obtained
from a propagator fow; +vo < 0. For examplea- x; — X < ¢ with a > 0 can be
obtained withv; = vscalda,vid(x;)) and v, = vminugvoffsetvid(xz),c)) or vo =
voffsetvminugvid(xz)), —c).

Scale-views reconsidered’he coefficient of a scale-view is restricted to be positive.
Allowing arbitrary non-zero constanésn a scale-views = vscalda, x) requires to take
the signedness @finto account. This can be seen for the following two operetithe
others are similar):

s.getmin() :=if a<Othena-X.getmax() elsea-X.getmin()
s.adjmax(n) :=if a< Othen x.adjmin([n/a]) else x.adjmax(|n/al)

This extension might be inefficient. Consider Example 2id@ghe loop imple-
menting propagation on all views, the decision whether thefficient in question is
positive or negative must be made. For modern computerslittmmals — in particu-
lar in tight loops — can reduce performance considerably. gkenefficient way is to
restrict scale-views to positive coefficients and use aritiatddl minus-view for cases
where negative coefficients are required.

Example 5 (Linear inequalities reconsidered efficient way to implement a propa-
gator for linear inequality distinguishes positive andateg variables as iy{ ; x +
Yiti-Yi<c

The propagator is simple: it consists of two parts, one ferttand one for they;.
Both parts share the same implementation used with diffefiews. To propagate to
thex;, identity-views are used. To propagate to yheminus-views are used. Arbitrary
coefficients are obtained from scale-views as shown above.

The example shows that it can be useful to make parts of a gabpageneric
and reuse these parts with different views. Puget preseiji€] an algorithm for the
bounds-consistent alldifferent. The paper presents amlglgorithm for adjusting the
upper bounds of the variables and states that the lower bounds can be adjusted by
using the same algorithm on variablgsvherey; = —x;. With views, this technique for
simplifying the presentation of an algorithm readily casrbver to its implementation:
the implementation can be reused together with minus-views

Constant-views.Derived views exploit that views do not need to be implemerite
terms of variables. This can be taken to the extreme in thevelvas no access at all to
a variable. A constant-view = vcon(c) for an integerc provides operations such that
v behaves as a variabkebeing equal ta:
v.getmin() =cC Vgetmax()
v.adjmin(n) :=if n > cthen falil v.adjmax(n)
v.excval(n) :=if n= cthen falil

=cC
=if n < cthen falil

Example 6 (Ternary linear inequalitiesinother optimization for linear constraints
are ternary variants. Given a propagatorfp#- v, + vz < ¢ and using a constant-view
vcon(0) for one of the viewsy, all binary variants as discussed earlier can be obtained.

In summary, for linear inequalities (this carries over teelr equalities and dise-
qualities), views support many optimized special casas figst two implementations
(the generah-ary case and the ternary case). These implementationsrgre as they
do not need to consider coefficients.

4 Boolean Views

Constraints on 0/1 variables are a special case of finite oloomastraints. However,
specialized propagators can take advantage of the mores@rhetowledge about the
domain.

A Boolean-viewof a finite domain variable extends the variable’s interfadt
operations for testing its valug.gero(), X.one(), X.none()) and assigning the variable
(x.assign_one(), Xx.assign_zero()). Propagators specialized for Boolean-views, such
as equality I§; = by), conjunction (by A by) < bs), and equivalencefy = by) < bs),
can be implemented in a straightforward way using this fater.

Symmetric Boolean propagator3he inverse of a Boolean is its logical negation, im-
plemented by anegated Boolean-viewlrhe operations for a negated Boolean-view
v =vnegX) are straightforward:

v.zero() :=X.one() V.one() = X.zero()
v.none() := X.none()
v.assign one() := X.assign_zero() v.assign zero() :=X.assign_one()

Example 7 (Ternary disjunctionpoolean disjunctiorixVy) < z can be implemented
as (—xA —y) & -z This translates directly to an instance of the Booleanuwustjon
propagator. Similarly, other Boolean propagators suchxeligive or and implication
can be derived.

5 Domain Operations and Range Iterators

Today'’s constraint programming systems support domairatipas either only for ac-
cess or by means of an explicitly represented abstractgetdn this paper, we propose
domain operations based on range iterators. These operaie shown to be simple,
expressive, and efficient. Additionally, range iteratoms assential for views as pre-
sented in Sect. 6.

Range iterators.A range iterator rfor a range sequence= ([n; .. m])!‘:1 allows to
iterate overs: each of then; .. mj] can be obtained in sequential order but only one at
a time. A range iteratar provides the following operations:done() tests whether all
ranges have been iteratedhext() moves to the next range, anchin() andr.max()
return the minimum and maximum value for the current rangeséir) we refer to the
set defined by an iterator(which must coincide with sé)).

A possible implementation of a range iteratdor s maintains an indek which is
initially iy = 1, the operations can then be defined as:

r.done() :=1ir >k rnext() = (i —ir+1)
rmin() =n; rmax() =,

A range iterator hides its implementation. Iteration catp@osition as above, but
it can also be by traversing a list. The latter is particylarteresting if variable domains
are implemented as lists of ranges themselves.

Iterators are consumed by iteration. Hence, if the samessmgLneeds to be iterated
twice, a fresh iterator is needed. If iteration is cheap,set@peration for an iterator
can be provided so that multiple iterations are supportetthé®pame iterator. For more
expensive iterators, a solution is discussed later.

Domain operations.Variables are extended with operations to access and mibaifry
domains with range iterators. For a variak)¢he operationx.getdom() returns a range
iterator for range@om(x)). For a range iteratar the operatiorx.setdom(r) updates
dom(x) to setr) provided that s€t) C dom(x). The responsibility for ensuring that
sef(r) C dom(x) is left to the programmer and hence requires careful coreide.
Later richer (and safe) domain operations are introducked.operationx.setdom(r) is
genericwith respect ta': any range iterator can be used.

Domain operations can offer a substantial improvement gakre operations, if
many values need to be removed from a variable domain simadtasly. Assume a typ-
ical implementation of a variable domdhwhich organizes rangés) = ([n; .. m])ik:l
as a linked-list. Removing a single element frenakesO(k) time and might increase
the length of the linked-list by one (introducing an addiibhole). Hence, in the worst
case, removing elements take®(l (k+1)) time. With domain operations based on it-
erators, removal taked(k+I) time, as the update can be implemented as one linear
pass over the linked list.

Range iterators serve as simplistic abstract datatypedorithe finite sets of inte-
gers. However, they provide some essential advantagesaovexplicit set represen-
tation. First, any range iterator regardless of its impletaton can be used to update
the domain of a variable. This turns out to allow for simpliceent, and expressive
updates of variable domains. Second, no costly memory neamagt is required to
maintain a range iterator as it provides access to only amgerat a time. Third, itera-
tors are essential in providing domain operations on vieialews as will be discussed
in Sect. 6.

Intersection iterators.Let us consider intersection as an example for computing wit
range iterators. Intersection is computed by an intersed@rator = iinter(a,b), tak-
ing two range iteratora andb as input where sét) = se{a) Nsetb). The intersection
iterator maintains integersandm for storing the smallest and largest value of its cur-
rent range. When initialized, the operatinnext() is executed once. The operations
are shown in Figure 1.

Therepeat-loop iteratesa andb until their ranges overlap. The tests whether
b are done ensure that no operation is performed on a donéoitefde remainder
computes the resulting range and prepares for computingtaargge.

The iteratorsa andb can be arbitrary iterators (again, the intersection iterat
generig, so it is easy to obtain an iterator that computes the iatien of three iter-
ators by using two intersection iterators. Intersectiobusone example for a generic

r.done() := a.done() vV b.done()

rmin():= n

rmax() := m

r.next() :=if a.done() vV b.done() then return
repeat

while —a.done() A (amax() < b.min()) do a.next()
if a.done() then return
while —b.done() A (b.max() < amin()) do b.next()
if b.done() then return
until amax() > b.min()
n«— max@amin(),b.min()); M+ min(amax(),b.max())
if amax() < b.max() then anext() elseb.next()

Fig. 1. Operations of an intersection iterator

iterator, other useful iterators are for example: iuf@b) for iterating the union o&
andb, iminuga, b) for iterating the set difference afandb, and icomp(a) for iterating
the complement o with respect to some fixed universe.

Example 8 (Propagating equalitylConsider a propagator that implements domain-
consistent equalityx = y (assuming thak andy are variables, views are discussed
later). The propagator can be implemented as follows: gefaréterators fox andy by

rx = X.getdom() andry = y.getdom(), create an intersection iterator= iinter(rx, ry),
update one of the variable domainsogetdon(ri), and copy the domain fromtoy

by y.setdom(x.getdom()).

Cache-iterators. The above example suggests that for some propagators ittex be
to actually create an intermediate representation of thgaaequence computed by
an iterator. The intermediate representation can be reasedten as needed. This is
achieved by acache-iterator it takes an arbitrary range iterator as input, iterates it
completely, and stores the obtained ranges in an arrayctlisleoperations then use the
array. The cache-iterator also implements a reset oparasiaiscussed above. By this,
the possibly costly input iterator is used only once, while tache-iterator can be used
as often as needed.

Richer domain operationsWith the help of iterators, richer domain operations are
effortless. For a variablg and a range iteratar, the operatiorx.adjdom(r) replaces
dom(x) by dom(x) Nse{r), whereax.excdom(r) replaces doitx) by domx) \ se{r):

x.adjdom(r) := X.setdom(iinter(x.getdom(),r))
X.excdom(r) := X.setdom(iminus(x.getdom(),r))

Value versus range iteratorsAnother design choice is to base domain operations on
value iterators: iterate values rather than ranges of arbét.is not efficient: a value
sequence is considerably longer than a range sequencerifcufza for the common
case of a singleton range sequence).

For implementing propagators, however, it can be simpléetate values. This can
be achieved by a range-to-value iterator. A value iteratwas the operationsdone(),
v.next(), andv.val() to access the current value. A range-to-value iteratorstake
range iterator as input and returns a value iterator itegdtie values of the range se-
quence. The inverse is a value-to-range iterator: it takeim@ut a value iterator and
returns the corresponding range iterator.

Iterators as adaptors.Global constraints are typically implemented by a propagat
computing over some involved data structure, such as fomplaa variable-value
graph for domain-consistent alldifferent [12]. After peggtion, the new variable do-
mains must be transferred from the data structure to thahlas. This can be achieved
by using a range or value iterator as adaptor. The adaptoai@seon the data structure
and iterates the range or value sequence for a particulati@r The iterator then can
be passed to the appropriate domain operation.

6 Variable Viewswith Domain Operations
This section discusses domain operations for variables/iesing iterators.

Identity and constant viewdDomain operations for identity-views and constant-views
are straightforward. The domain operations for an identiéyv v = vid(x) use the do-
main operations oRr: v.getdom() := X.getdom() andv.setdom(r) := X.setdom(r). For

a constant-view = vcon(c), the operatio.getdom() returns an iterator for the single-
ton range sequengéc .. c|). The operatiorv.setdom(r) just checks whether the range
sequence af is empty.

Derived views.Domain operations for an offset-view vofféetc) are provided by an
offset-iterator. The operations of an offset-iteraidor a range iterator and an integer
c (created by ioffsét, c)) are as follows:

omin() :=r.min()+cC omax() :=r.max()+cC
0.done() :=r.done() o.next() :=r.next()

The domain operations for an offset view= voffsetx, c) are as follows:
v.getdom() := ioffset(x.getdom(), C) V.setdom(r) := X.setdom(ioffset(r, —c))

For minus-views we just give the range sequence as iterstimovious. For a given
range sequencén; .. m])!‘zl, the negative sequence is obtained by reversal and sign
change ag[—my_j1.. — nk,i+1]>!‘:1. The same iterator for this sequence can be used
both forsetdom andgetdom operations. Note that the iterator is quite complicated as
it changes direction of the range sequence, possible ingritations are discussed in
Sect. 8.

Assume a scale-view= vscaléa,v) with a > 0 and([n; .. m])ik:l being a range
sequence fov. If a= 1, the range sequence remains unchanged. Otherwise, the cor
responding range sequence ®is ({a-m},{a-(m+1)},...,{a-m},...,{a-n},
{a-(k+1)},....{a-my}).

Assume that]n; .. m]>ik:l is a range sequence farThen for 1< i < k the ranges
[[ni/a] .. [m/a]] correspond to the required variable domainidiowever they do not
necessarily form a range sequence as the ranges might bg evgriapping, or adja-
cent. Iterating the range sequence is simple by skippingyerapges and conjoining
overlapping or adjacent ranges.

Consistency.An important issue is how views affect the consistency of@pgator.
Let us first consider all views except scale-views. Thesevmmpute bijections on the
values as well as on the ranges of a donfidih bounds (domain) consistent propagator
for a constrainC with variablesxy, ..., X, establishes bounds (domain) consistency for
the constrain€ with all the variables replaced lw(x) (if vk computes the view ofy).

Scale-views only compute bijections on values: a range doesemain a range
after multiplication. This implies that bounds consistprdpagators do not establish
bounds consistency on scale-views. Consider for exampliads consistent propa-
gator for alldifferent. Withx,y,z € {1,2}, alldifferent4x,4y,4z) cannot detect failure,
while alldifferen{x,y,z) can. Note that this is not a limitation of our approach but a
property of multiplication.

7 Viewsfor Set Constraints

Views and iterators readily carry over to other constraordins. This section shows
how to apply them to finite sets.

Finite sets. Most systems approximate the domain of a finite set variaple ¢reatest
lower and least upper bound [3]: ddx) = (glb(x),lub(x)). The fundamental operations
are similar to domain operations on finite domain variablegstglb() returns glifx),
x.getlub() returns lulfx), x.adjglb(D) updates dortx) to (glb(x) U D,lub(x)), and
x.adjlub(D) updates dorfx) to (glb(x),lub(x) N D).

All these operations take sets as arguments or return therthefabstract datatype
we use for representing sets is an iterator, iterators playcentral role here. In fact,
range iterators provide exactly the operations that sgtggators need: union, intersec-
tion, and complement. Most propagators thus do not reqeimporary data structures.

As for finite domain variables, set propagators now operateeat views. The ob-
vious views for set variables are the identity view and camisviews — like the empty
set, the universe, or some arbitrary set. Constant-vieamdgelp derive binary propa-
gators from ternary ones. For exam@enN s, = 3 implements set disjointnessss is
the constant empty set.

Symmetric set constraintd he inverse of a set variable is its complementcadmple-
ment view = vcompl(x) of a set viewx can be easily derived using the iterators already
introduced:
v.getglb() :=icompl(X.getlub()) v.getlub() :=icompl(x.getglb())
v.adjglb(D) := x.adjlub(icompl(D)) v.adjlub(D) := x.adjglb(icompl(D))

The propagators for symmetric constraints over Booleanwieadily carry over to
sets:x; = X2 UXg can be implemented as vconipl) = vcompl(xz) N vcompl(xs), and
s = S\ sz is equivalent te; = s, Nveompl(sg).

Cross-domain viewsWith finite domain and set constraints in a single systenssro
domain views come into play. The most obvious cross-domigiw is a finite domain
variable viewed as singleton set. Using generic propagatis immediately leads to
domain-connecting constraints.

Cross-domain views can support more than one implementtdiche same vari-
able type. Set variables, for example, can be implementddi@wer and upper bounds
or with their full domain using ROBDDs [7]. A cross-domairewi allows lower/upper
bound propagators to operate on ROBDD-based sets, reusipggators for which no
efficient BDD representation exists.

Finite domain constraints from set propagatorSingleton-views can also be used to
derive pure finite domain constraints from set propagatewsexample, the constraint
samé[xy,...,%n|,[Y1,---,Ym]) States that the two sequences of finite domain variables
take the same values. Using singleton views,,{x } = UjL1{y;} yields an imple-
mentation for this constraint. th = n, and all variables must take different values, a
disjoint union can be used instead.

8 Implementation

The presented architecture can be implemented as an orthldgger of abstraction for
any constraint programming system. This section preskat&ihdamental mechanisms
necessary for iterators and views.

Polymorphism. The implementation of generic propagators, views, anctites re-
quirespolymorphismpropagators operate on different views, domain operstom it-
erators on different iterators. Both subtype polymorphf#mough inheritance in Java,
inheritance and virtual methods in+Cand parametric polymorphism (through tem-
plates in G, generics in Java, polymorphic functions in ML or Haskedihde used.

In C+, parametric polymorphism through templates is resolvedaipile-time, and
the generated code is monomorphic. This enables the canwpifeerform aggressive
optimizations, in particular inlining. The hope is that #dditional layer of abstraction
can be optimized away entirely. Some ML compilers also appbnomorphization,
so similar results could be achieved. Java generics areitamripto casts and virtual
method calls, any optimization is left to the just-in-tinwnpiler.

Achieving high efficiency in € with templates sacrifices expressiveness. Instantia-
tion canonly happen at compile-time. Hence, either @ust be used for modeling, or
all potentially required propagator variants must be piediby explicit instantiation.
The choicewhich propagator to use can however be made at runtime:rfeatiequa-
tions, for instance, we can test if all coefficients are yrotsall are positive, and post
the respective optimized propagators. In Gecode, we diyrenly use template-based
polymorphism.

For the instantiation of templates as well as for inlinirigg tode that is instantiated
or inlined must be available at compile time of the code ttsa&suit. This is why most
of the actual code in Gecode resides in lizader files, slowing down compilation of
the system. On the interface level however, no templatessw@, such that the header
files needed fousingthe library are reasonably small.

System requirement§ariable views and range iterators can be added as an ortabgo
extension to existing systems. While value operations ateritical as discussed in
Sect. 2, depending on which domain operations a systemdas\vefficiency can differ.
In the worst case, domain operations need to be translatedatue operations. This
would decrease efficiency considerably, however interatediomputations on range
iterators would still be carried out efficiently.

A patrticularly challenging aspect is reversal of range seges required for the
minus-iterator. One approach to implement reversal is terekall iterators such that
they can iterate both backwards and forwards. Another @gprcs similar to a cache-
iterator: store the ranges generated from the input iteiatan array and iterate in
reverse order from the array. In Gecode, we have chosen seflatter approach due to
its simplicity. We are going to explore also the former agtu as variable domains in
Gecode are provided as doubly-linked lists, iteration ithlwbrections can be provided
efficiently.

9 Analysisand Evaluation

This section analyzes the impact different implementatiofiterators and views have
on efficiency. Two aspects are evaluated: compile-timerpolphism versus run-time
polymorphism, and iterators versus temporary data strestu

The experiments use the Gecode (Version 1.0.0) constraint programming li-
brary [2]. All tests were carried out on a Intel Pentium IV wi2.8GHz and 1GB of
RAM, using Linux and the GNU € compiler, version 3.4.3. Runtimes are the average
of 20 runs, with a coefficient of deviation less than 2% fortelhchmarks. Gecode is
competitive in efficiency with state-of-the art systemspmparison is available on the
Gecode web pages [2].

The optimizedcolumn in Table 1 gives the time in milliseconds of the opted
system, the other columns are relativeoatimized The examples used are standard
benchmarks, the first group using only finite domain constsathe second group using
mainly set constraints.

Code inspectionA thorough inspection of the code generated by the GNd@npiler
and the Microsoft Visual € compiler shows that they actually perform the optimiza-
tions we consider essential. Operations on both views analtdrs are inlined entirely
and thus implemented in the most efficient way. The abstmastilo not impose a run-
time penalty (compared to a system without views and itesato

Templates versus virtual method&s the previous section suggested, in, Compile-
time polymorphism using templates is far more efficient thimual method calls. To
evaluate this, we changed the basic operations of finite ohomiews such that they
cannot be inlined. The required changes are rather invpseedie did not try the same
for iterators and set views. An implementation based omainnethods will typically
exhibit an even higher overhead. Table 1 shows the resudtdimnno-inline Function
calls that are not inlined cause a runtime overhead betw@&nahd 58%.

Table 1. Runtime comparison

Benchmark optimized no-inline|temporar)
time in ms relative %

Alpha 122.85 141.30 103.7(

Donald 0.64 155.60 114.70

Golomb 10 (bound)| 1260.50 158.20 101.1d
Golomb 10 (domain) 2064.00 129.70 100.0d
Magic Sequence 500 192.38 129.80 101.4d

Magic Square 6 0.8 133.40 105.20
Partition 32 6930,00 135.50 101.40
Photo 143.15 131.3@ 99.60
Queens 100 1.90 132.2¢ 99.30
Crew 338 — 191.10
Golf 8-4-9 498.00 — 271.40
Hamming 20-3-32 1496.00 — 200.7d
Steiner 9 124.08 — 191.00

Temporary data structureSOne important claim is that iterators are advantageous be-
cause they avoid temporary data structures. Table 1 showslumntemporarythat
computing temporary data structures has limited impaa{aB%) on finite domain
variables, but considerable impact for set constraintstqup’1% overhead). Tempo-
rary data structures have been emulated by wrapping akdey in a cache-iterator as
described in Sect. 5.

Applicability. Deriving several instances from a single propagator implaation sig-
nificantly reduces the overall amount of code that needs tariiten. In Gecode, 31
finite domain propagators are instantiated from 12 geneoipggators, 9 Boolean prop-
agators from 4 generic propagators, and 22 set propagatons¥generic propagators.
The generic propagators make up approximately 3800 lineofces code, saving
approximately 4800 lines of code to be written, tested, aathtained.

Obviously, views and iterators are no silver bullet. The hagdésm only yields effi-
cient propagators if the compiler can generate the codentbiald otherwise have been
hand-written. If, for example, set complement views arelieseensively, the overhead
compared to a hand-written propagator can become profabiti

10 Conclusion and Future Work

The paper has introduced an architecture decoupling patpemgfrom variables based
on views and range iterators. We have argued how to make gatgra generic, simpler,
and reusable with views for different constraints. We haeoduced range iterators as
abstractions for efficient domain operations compatibléhwiews. The architecture
has been shown to be applicable to many finite domain and §etteonstraints. Using
parametric polymorphism for views and iterators leads tefficient implementation
that incurs no runtime cost.

Future work. An obvious route for future work is to explore richer variahliews.
Possible candidates are sums and products of variableg geyond a single variable
per view: the challenge here will be to provide efficient raiitgrators.

This paper explores views only for implementation purpogeselated question
is whether views can also be useful for modeling or for aut@rteansformation of
models.

Acknowledgements Christian Schulte is partially funded by the Swedish Redear
Council (VR) under grant 621-2004-4953. Guido Tack is pdstifunded by DAAD
travel grant D/05/26003. Thanks to Patrick Pekczynski feptwith the benchmarks,
and to Mikael Lagerkvist for helpful comments. We thank theraymous reviewers, of
this paper and of a previous version, for their construatmmments.

References

1. Pascal Brisset, Hani El Sakkout, ThomiRwirth, Warwick Harvey, Micha Meier, Stefano
Novello, Thierry Le Provost, Joachim Schimpf, and Mark Wallace. EGEiRConstraint
Library Manual 5.8. User manual, IC Parc, London, UK, Febrid95.

2. Gecode: Generic constraint development environment, 2005ilaBl&as an open-source
library fromwww.gecode.org.

3. Carmen Gervet. Interval propagation to reason about sets: Defiaiti implementation of
a practical languageConstraints 1(3):191-244, 1997.

4. ILOG S.A. ILOG Solver 5.0: Reference Manudbentilly, France, August 2000.

5. Intelligent Systems Laboratory. SICStus Prolog user’s manua?,13.1Technical report,
Swedish Institute of Computer Science, Box 1263, 164 29 Kista, Swéghih 2005.

6. Francois Laburthe. CHOCO: implementing a CP kernel. In Nicolasi@ssdu, Warwick
Harvey, Martin Henz, Francois Laburthe, Eric Monfroy, Tobiaillgr, Laurent Perron, and
Christian Schulte, editor®roceedings of TRICS: Techniques foR Implementing Constraint
programming Systems, a post-conference workshop of CP, 200@ber TRA9/00, pages
71-85, 55 Science Drive 2, Singapore 117599, September 2000.

7. Vitaly Lagoon and Peter J. Stuckey. Set domain propagation usingdRSB In Mark
Wallace, editor,Tenth International Conference on Principles and Practice of Constraint
Programming volume 3258 of ecture Notes in Computer Scienpages 347-361, Toronto,
Canada, September 2004. Springer-Verlag.

8. Tobias Miller. Constraint Propagation in Mozart Doctoral dissertation, Univergit des
Saarlandes, Fakait fur Mathematik und Informatik, Fachrichtung Informatik, Im Stadtwald,
66041 Saarlircken, Germany, 2001.

9. Jean-Francois Puget. AxGmplementation of CLP. IfProceedings of the Second Singapore
International Conference on Intelligent Systems (SPICh&pes B256-B261, Singapore,
November 1994.

10. Jean-Francois Puget. A fast algorithm for the bound consistfaldiff constraints. In
Proceedings of the 15th National Conference on Atrtificial IntelligenceAlA98), pages
359-366, Madison, WI, USA, July 1998. AAAI Press/The MIT Press.

11. Jean-Francois Puget and Michel Leconte. Beyond the glassCmmstraints as objects.
In John Lloyd, editorProceedings of the International Symposium on Logic Programming
pages 513-527, Portland, OR, USA, December 1995. The MIT Press

12. Jean-Charles&in. A filtering algorithm for constraints of difference in CSPsPhceed-
ings of the Twelfth National Conference on Artificial Intelligenpages 362—-367, Seattle,
WA, USA, 1994. AAAI Press.

